Merge pull request #1418 from npoirey/master

Frenchdev v1
example_keyboards
Jack Humbert 8 years ago committed by GitHub
commit 1524c2cb16

@ -0,0 +1,3 @@
ifndef MAKEFILE_INCLUDED
include ../../Makefile
endif

@ -0,0 +1,85 @@
/*
Copyright 201 Nicolas Poirey <nicolas.poirey@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef FRENCHDEV_V1_CONFIG_H
#define FRENCHDEV_V1_CONFIG_H
#include "config_common.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x1307
#define DEVICE_VER 0x0001
#define MANUFACTURER Nicolas Poirey
#define PRODUCT Frenchdev V1
#define DESCRIPTION QMK keyboard firmware for Frenchdev
/* key matrix size */
#define MATRIX_ROWS 16
#define MATRIX_COLS 6
/* number of backlight levels */
#define BACKLIGHT_LEVELS 3
#define LED_BRIGHTNESS_LO 15
#define LED_BRIGHTNESS_HI 255
/* Set 0 if debouncing isn't needed */
#define DEBOUNCE 5
#define USB_MAX_POWER_CONSUMPTION 500
#define MOUSEKEY_INTERVAL 20
#define MOUSEKEY_DELAY 0
#define MOUSEKEY_TIME_TO_MAX 5
#define MOUSEKEY_MAX_SPEED 2
#define MOUSEKEY_WHEEL_DELAY 0
#define TAPPING_TOGGLE 1
/* define if matrix has ghost */
//#define MATRIX_HAS_GHOST
#define TAPPING_TERM 200
#define IGNORE_MOD_TAP_INTERRUPT // this makes it possible to do rolling combos (zx) with keys that convert to other keys on hold (z becomes ctrl when you hold it, and when this option isn't enabled, z rapidly followed by x actually sends Ctrl-x. That's bad.)
/* key combination for command */
#define IS_COMMAND() ( \
keyboard_report->mods == (MOD_BIT(KC_LCTL) | MOD_BIT(KC_RCTL)) || \
keyboard_report->mods == (MOD_BIT(KC_LSFT) | MOD_BIT(KC_RSFT)) \
)
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
// #define NO_DEBUG
/* disable print */
// #define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
//#define DEBUG_MATRIX_SCAN_RATE
#endif //FRENCHDEV_V1_CONFIG_H

@ -0,0 +1,87 @@
#include "frenchdev.h"
#include "i2cmaster.h"
bool i2c_initialized = 0;
uint8_t mcp23018_status = 0x20;
void matrix_init_kb(void) {
// keyboard LEDs (see "PWM on ports OC1(A|B|C)" in "teensy-2-0.md")
TCCR1A = 0b10101001; // set and configure fast PWM
TCCR1B = 0b00001001; // set and configure fast PWM
// unused pins - D4, D5, D7, E6
// set as input with internal pull-ip enabled
DDRD &= ~(1<<5 | 1<<4);
DDRE &= ~(1<<6);
PORTD |= (1<<5 | 1<<4);
PORTE |= (1<<6);
frenchdev_blink_all_leds();
frenchdev_blink_all_leds();
frenchdev_blink_all_leds();
frenchdev_blink_all_leds();
matrix_init_user();
}
void frenchdev_blink_all_leds(void)
{
frenchdev_led_all_off();
frenchdev_led_all_set(LED_BRIGHTNESS_HI);
frenchdev_led_1_on();
_delay_ms(50);
frenchdev_led_2_on();
_delay_ms(50);
frenchdev_led_3_on();
_delay_ms(50);
frenchdev_led_1_off();
_delay_ms(50);
frenchdev_led_2_off();
_delay_ms(50);
frenchdev_led_3_off();
frenchdev_led_all_off();
}
uint8_t init_mcp23018(void) {
mcp23018_status = 0x20;
// I2C subsystem
// uint8_t sreg_prev;
// sreg_prev=SREG;
// cli();
if (i2c_initialized == 0) {
i2c_init(); // on pins D(1,0)
i2c_initialized++;
_delay_ms(1000);
}
// set pin direction
// - unused : input : 1
// - input : input : 1
// - driving : output : 0
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(IODIRA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00000000); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00111111); if (mcp23018_status) goto out;
i2c_stop();
// set pull-up
// - unused : on : 1
// - input : on : 1
// - driving : off : 0
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPPUA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00000000); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00111111); if (mcp23018_status) goto out;
out:
i2c_stop();
// SREG=sreg_prev;
return mcp23018_status;
}

@ -0,0 +1,115 @@
#ifndef FRENCHDEV_V1_H
#define FRENCHDEV_V1_H
#include "quantum.h"
#include <stdint.h>
#include <stdbool.h>
#include "i2cmaster.h"
#include <util/delay.h>
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#define CPU_16MHz 0x00
// I2C aliases and register addresses (see "mcp23018.md" on tmk repository)
#define I2C_ADDR 0b0100000
#define I2C_ADDR_WRITE ( (I2C_ADDR<<1) | I2C_WRITE )
#define I2C_ADDR_READ ( (I2C_ADDR<<1) | I2C_READ )
#define IODIRA 0x00 // i/o direction register
#define IODIRB 0x01
#define GPPUA 0x0C // GPIO pull-up resistor register
#define GPPUB 0x0D
#define GPIOA 0x12 // general purpose i/o port register (write modifies OLAT)
#define GPIOB 0x13
#define OLATA 0x14 // output latch register
#define OLATB 0x15
extern uint8_t mcp23018_status;
void init_frenchdev(void);
void frenchdev_blink_all_leds(void);
uint8_t init_mcp23018(void);
#define LED_BRIGHTNESS_LO 15
#define LED_BRIGHTNESS_HI 255
inline void frenchdev_board_led_on(void) { DDRD |= (1<<6); PORTD |= (1<<6); }
inline void frenchdev_led_1_on(void) { DDRB |= (1<<5); PORTB |= (1<<5); }
inline void frenchdev_led_2_on(void) { DDRB |= (1<<6); PORTB |= (1<<6); }
inline void frenchdev_led_3_on(void) { DDRB |= (1<<7); PORTB |= (1<<7); }
inline void frenchdev_led_on(uint8_t led) { DDRB |= (1<<(led+4)); PORTB |= (1<<(led+4)); }
inline void frenchdev_board_led_off(void) { DDRD &= ~(1<<6); PORTD &= ~(1<<6); }
inline void frenchdev_led_1_off(void) { DDRB &= ~(1<<5); PORTB &= ~(1<<5); }
inline void frenchdev_led_2_off(void) { DDRB &= ~(1<<6); PORTB &= ~(1<<6); }
inline void frenchdev_led_3_off(void) { DDRB &= ~(1<<7); PORTB &= ~(1<<7); }
inline void frenchdev_led_off(uint8_t led) { DDRB &= ~(1<<(led+4)); PORTB &= ~(1<<(led+4)); }
inline void frenchdev_led_all_on(void)
{
frenchdev_board_led_on();
frenchdev_led_1_on();
frenchdev_led_2_on();
frenchdev_led_3_on();
}
inline void frenchdev_led_all_off(void)
{
frenchdev_board_led_off();
frenchdev_led_1_off();
frenchdev_led_2_off();
frenchdev_led_3_off();
}
inline void frenchdev_led_1_set(uint8_t n) { OCR1A = n; }
inline void frenchdev_led_2_set(uint8_t n) { OCR1B = n; }
inline void frenchdev_led_3_set(uint8_t n) { OCR1C = n; }
inline void frenchdev_led_set(uint8_t led, uint8_t n) {
(led == 1) ? (OCR1A = n) :
(led == 2) ? (OCR1B = n) :
(OCR1C = n);
}
inline void frenchdev_led_all_set(uint8_t n)
{
frenchdev_led_1_set(n);
frenchdev_led_2_set(n);
frenchdev_led_3_set(n);
}
#define KEYMAP( \
\
k01, k02, k03, k04, k05, k06, k09, k0a, k0b, k0c, k0d, k0e, \
k10, k11, k12, k13, k14, k15, k16, k19, k1a, k1b, k1c, k1d, k1e, k1f, \
k20, k21, k22, k23, k24, k25, k26, k29, k2a, k2b, k2c, k2d, k2e, k2f, \
k30, k31, k32, k33, k34, k35, k36, k39, k3a, k3b, k3c, k3d, k3e, k3f, \
k40, k41, k42, k43, k44, k45, k46, k47, k37, k38, k48, k49, k4a, k4b, k4c, k4d, k4e, k4f, \
k50, k51, k52, k53, k54, k55, k56, k57, k58, k59, k5a, k5b, k5c, k5d, k5e, k5f, \
\
PL1, PL2, PL3, \
PR1, PR2, PR3 \
) \
\
/* matrix positions, inverted left and right for I2C to be on row 0-7 */\
{ \
\
{ k5f, k4f, k3f, k2f, k1f, KC_NO}, \
{ k5e, k4e, k3e, k2e, k1e, k0e }, \
{ k5d, k4d, k3d, k2d, k1d, k0d }, \
{ k5c, k4c, k3c, k2c, k1c, k0c }, \
{ k5b, k4b, k3b, k2b, k1b, k0b }, \
{ k5a, k4a, k3a, k2a, k1a, k0a }, \
{ k59, k49, k39, k29, k19, k09 }, \
{ k58, k48, k38, PR1, PR2, PR3 }, \
\
{ k57, k47, k37, PL1, PL2, PL3 }, \
{ k56, k46, k36, k26, k16, k06 }, \
{ k55, k45, k35, k25, k15, k05 }, \
{ k54, k44, k34, k24, k14, k04 }, \
{ k53, k43, k33, k23, k13, k03 }, \
{ k52, k42, k32, k22, k12, k02 }, \
{ k51, k41, k31, k21, k11, k01 }, \
{ k50, k40, k30, k20, k10, KC_NO } \
}
#endif

@ -0,0 +1,178 @@
#ifndef _I2CMASTER_H
#define _I2CMASTER_H 1
/*************************************************************************
* Title: C include file for the I2C master interface
* (i2cmaster.S or twimaster.c)
* Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury
* File: $Id: i2cmaster.h,v 1.10 2005/03/06 22:39:57 Peter Exp $
* Software: AVR-GCC 3.4.3 / avr-libc 1.2.3
* Target: any AVR device
* Usage: see Doxygen manual
**************************************************************************/
#ifdef DOXYGEN
/**
@defgroup pfleury_ic2master I2C Master library
@code #include <i2cmaster.h> @endcode
@brief I2C (TWI) Master Software Library
Basic routines for communicating with I2C slave devices. This single master
implementation is limited to one bus master on the I2C bus.
This I2c library is implemented as a compact assembler software implementation of the I2C protocol
which runs on any AVR (i2cmaster.S) and as a TWI hardware interface for all AVR with built-in TWI hardware (twimaster.c).
Since the API for these two implementations is exactly the same, an application can be linked either against the
software I2C implementation or the hardware I2C implementation.
Use 4.7k pull-up resistor on the SDA and SCL pin.
Adapt the SCL and SDA port and pin definitions and eventually the delay routine in the module
i2cmaster.S to your target when using the software I2C implementation !
Adjust the CPU clock frequence F_CPU in twimaster.c or in the Makfile when using the TWI hardware implementaion.
@note
The module i2cmaster.S is based on the Atmel Application Note AVR300, corrected and adapted
to GNU assembler and AVR-GCC C call interface.
Replaced the incorrect quarter period delays found in AVR300 with
half period delays.
@author Peter Fleury pfleury@gmx.ch http://jump.to/fleury
@par API Usage Example
The following code shows typical usage of this library, see example test_i2cmaster.c
@code
#include <i2cmaster.h>
#define Dev24C02 0xA2 // device address of EEPROM 24C02, see datasheet
int main(void)
{
unsigned char ret;
i2c_init(); // initialize I2C library
// write 0x75 to EEPROM address 5 (Byte Write)
i2c_start_wait(Dev24C02+I2C_WRITE); // set device address and write mode
i2c_write(0x05); // write address = 5
i2c_write(0x75); // write value 0x75 to EEPROM
i2c_stop(); // set stop conditon = release bus
// read previously written value back from EEPROM address 5
i2c_start_wait(Dev24C02+I2C_WRITE); // set device address and write mode
i2c_write(0x05); // write address = 5
i2c_rep_start(Dev24C02+I2C_READ); // set device address and read mode
ret = i2c_readNak(); // read one byte from EEPROM
i2c_stop();
for(;;);
}
@endcode
*/
#endif /* DOXYGEN */
/**@{*/
#if (__GNUC__ * 100 + __GNUC_MINOR__) < 304
#error "This library requires AVR-GCC 3.4 or later, update to newer AVR-GCC compiler !"
#endif
#include <avr/io.h>
/** defines the data direction (reading from I2C device) in i2c_start(),i2c_rep_start() */
#define I2C_READ 1
/** defines the data direction (writing to I2C device) in i2c_start(),i2c_rep_start() */
#define I2C_WRITE 0
/**
@brief initialize the I2C master interace. Need to be called only once
@param void
@return none
*/
extern void i2c_init(void);
/**
@brief Terminates the data transfer and releases the I2C bus
@param void
@return none
*/
extern void i2c_stop(void);
/**
@brief Issues a start condition and sends address and transfer direction
@param addr address and transfer direction of I2C device
@retval 0 device accessible
@retval 1 failed to access device
*/
extern unsigned char i2c_start(unsigned char addr);
/**
@brief Issues a repeated start condition and sends address and transfer direction
@param addr address and transfer direction of I2C device
@retval 0 device accessible
@retval 1 failed to access device
*/
extern unsigned char i2c_rep_start(unsigned char addr);
/**
@brief Issues a start condition and sends address and transfer direction
If device is busy, use ack polling to wait until device ready
@param addr address and transfer direction of I2C device
@return none
*/
extern void i2c_start_wait(unsigned char addr);
/**
@brief Send one byte to I2C device
@param data byte to be transfered
@retval 0 write successful
@retval 1 write failed
*/
extern unsigned char i2c_write(unsigned char data);
/**
@brief read one byte from the I2C device, request more data from device
@return byte read from I2C device
*/
extern unsigned char i2c_readAck(void);
/**
@brief read one byte from the I2C device, read is followed by a stop condition
@return byte read from I2C device
*/
extern unsigned char i2c_readNak(void);
/**
@brief read one byte from the I2C device
Implemented as a macro, which calls either i2c_readAck or i2c_readNak
@param ack 1 send ack, request more data from device<br>
0 send nak, read is followed by a stop condition
@return byte read from I2C device
*/
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
/**@}*/
#endif

@ -0,0 +1,409 @@
#include "frenchdev.h"
#include "mousekey.h"
#include "action.h"
#include "action_layer.h"
#include "keymap_extras/keymap_bepo.h"
// Each layer gets a name for readability, which is then used in the keymap matrix below.
// The underscores don't mean anything - you can have a layer called STUFF or any other name.
#define _BASE 0
#define _SYMBOLS 1
#define _MEDIA 2
#define _TRNS 8
#define PEDAL_DELAY 250
#define KEY_DELAY 130
enum macros {
M_LP, // left pedal
M_RP, // right pedal
M_SF, // shift
M_SFS, // shift and space
M_L1E, // L1 and space
L2INS, // L2 and insert
L2LOC, // Lock L2
M_UN, // undo
M_CUT, // cut
M_CP, // copy
M_PS, // paste
M_SE, // search
M_SFU, // shift and underscore
};
static uint16_t key_timer_left_pedal;
static uint16_t key_timer_right_pedal;
static uint16_t key_timer_shift;
static uint16_t key_timer_1;
static uint16_t key_timer_2;
static uint16_t shift_count = 0; //this is used to keep track of shift state and avoid inserting non breakable space
static uint16_t l2_locked = 0; //this indicate wether L2 is locked
#define BP_CBSP CTL_T(KC_BSPC)
#define BP_CDEL CTL_T(KC_DEL)
//layout : http://www.keyboard-layout-editor.com/#/gists/4480e3ab8026eb7c710a7e22203ef4aa
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* base
* left foot clicked is right click
* left foot pressed is layer 2
* right foot clicked is left click
* right foot pressed is layer 1 + scroll lock (used with autohotkey for easier scrolling with trackballs)
* ,------. .. ,------. *
* ,------| F3 |-------------. .. ,-------------| F10 |------. *
* ,------| F2 |------| F4 | F5 |------. .. ,------| F8 | F9 |------| F11 |------. *
* | F1 |------| »/3 |------|------| F6 | .. | F7 |------|------| -/8 |------| F12 | *
* ,------+------| «/2 |------| (/4 | )/5 |------| .. |------| @/6 | +/7 |------| //9 |------+------. *
* | ESC | "/1 |------| O |------|------| ¨ | .. | ^ |------|------| D |------| * /0 |BCKSP | *
* |------+------| É |------| P | È |------| .. |------| K | V |------| L |------+------| *
* | TAB | B |------| E |------|------| _ | .. | =/° |------|------| S |------| J |ENTER | *
* |------+------| U |------| I | F |------| .. |------| C | T |------| R |------+------| *
* | ` | A |------| Y |------|------| ; | .. | ! |------|------| UP |------| N | '/? | *
* |------+------| À |------| X | W |------|-------------. .. .-------------|------| M | G |------| H |------+------| *
* | SHIFT| Z |------| . |------|------|sp/sh |bsp/ct|L2/ins| .. |L2lock|del/CT|sp/sh |------|------| DOWN |------| Q |SHIFT | *
* |------+------| / |------| , | space|------|------|------ .. ------|------|------| L1/sp| LEFT |------| UP |------+------| *
* | CTRL | win |------/ \-------------| L1 | alt | .. | CAPS | L1 |-------------/ \------| : | CTRL | *
* `-------------/ \-------------/ .. \-------------/ \-------------/ *
*M(M_LP)
*/
[_BASE] = KEYMAP(
KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, \
KC_ESC, BP_DQOT, BP_LGIL, BP_RGIL, BP_LPRN, BP_RPRN, BP_DTRM, BP_DCRC, BP_AT, BP_PLUS, BP_MINS, BP_SLSH, BP_ASTR, KC_BSPC, \
KC_TAB, BP_B, BP_ECUT, BP_O, BP_P, BP_EGRV, BP_UNDS, BP_EQL, BP_K, BP_V, BP_D, BP_L, BP_J, KC_ENT, \
BP_GRV, BP_A, BP_U, BP_E, BP_I, BP_F, BP_SCLN, BP_EXLM, BP_C, BP_T, BP_S, BP_R, BP_N, BP_APOS, \
M(M_SF), BP_Z, BP_AGRV, BP_Y, BP_X, KC_RBRACKET, M(M_SFS), BP_CBSP, M(L2INS), M(L2LOC), BP_CDEL, M(M_SFS),BP_M, BP_G, KC_UP, BP_H, BP_Q, M(M_SF), \
KC_LCTL, KC_LGUI, KC_PSLS, BP_DOT, BP_COMM, KC_SPACE,M(M_L1E), KC_LALT, KC_CAPS, M(M_L1E),KC_SPACE,KC_LEFT, KC_DOWN, KC_RIGHT,BP_COLN, KC_RCTL, \
//left pedals
M(M_LP), M(M_RP), KC_TRNS, \
//right pedals
M(M_LP), M(M_RP), KC_TRNS \
),
/* Larer 1 for symbols.
* left foot is middle click
* ,------. .. ,------. *
* ,------| |-------------. .. ,-------------| |------. *
* ,------| |------| | |------. .. ,------| | |------| |------. *
* | |------| § |------|------| | .. | |------|------| ± |------| | *
* ,------+------| |------| µ | |------| .. |------| | |------| ÷ |------+------. *
* | | ¤ |------| { |------|------| ~ | .. | ˇ |------|------| ] |------| × | | *
* |------+------| * |------| } | ` |------| .. |------| # | [ |------| % |------+------| *
* | | \ |------| ( |------|------| | .. | |------|------| > |------| | | *
* |------+------| Ù |------| ) | + |------| .. |------| Ç | < |------| & |------+------| *
* | | = |------| copy |------|------| : | .. | ? |------|------| PGUP |------| _ | | *
* |------+------| cut |------| paste|search|------|-------------. .. .-------------|------| $ | = |------| | |------+------| *
* | | undo |------| \ |------|------| | | | .. | | | |------|------| PGDN |------| / | | *
* |------+------| |------| | |------|------|------ .. ------|------|------| | HOME |------| PGDN |------+------| *
* | | |------/ \-------------| | | .. | | |-------------/ \------| | | *
* `-------------/ \-------------/ .. \-------------/ \-------------/ *
*
*/
[_SYMBOLS] = KEYMAP(
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, \
KC_TRNS, BP_DCUR, BP_PARG, BP_SECT, BP_DGRK, KC_TRNS, BP_TILD, BP_DCAR, BP_LEQL, BP_GEQL, BP_PSMS, BP_OBEL, BP_TIMS, KC_TRNS, \
KC_TRNS, BP_BSLS, BP_ASTR, BP_LCBR, BP_RCBR, BP_GRV, KC_TRNS, BP_DIFF, BP_HASH, BP_LBRC, BP_RBRC, BP_PERC, BP_PMIL, KC_TRNS, \
KC_TRNS, BP_EQL, BP_UGRV, BP_LPRN, BP_RPRN, BP_PLUS, BP_COLN, BP_QEST, BP_CCED, BP_LESS, BP_GRTR, BP_AMPR, BP_UNDS, KC_TRNS, \
KC_TRNS, M(M_UN), M(M_CUT),M(M_CP), M(M_PS), M(M_SE), KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, BP_DLR, BP_EQL, KC_PGUP, BP_PIPE, BP_SLSH, KC_TRNS, \
KC_TRNS, KC_TRNS, BP_BSLS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_HOME, KC_PGDN, KC_END, KC_TRNS, KC_TRNS, \
//left pedals
KC_TRNS, KC_BTN1, KC_TRNS, \
//right pedals
KC_TRNS, KC_BTN1, KC_TRNS \
),
/* MEDIA, mouse and numpad.
* right pedal is left clic
* ,------. .. ,------. *
* ,------|PAUSE |-------------. .. ,-------------| PRINT|------. *
* ,------|SCROLL|------|MUTE |VOLUD |------. .. ,------| pre | next |------| calc |------. *
* |RESET |------| stop |------|------|VOLDU | .. | play |------|------| stop |------| num | *
* ,------+------| |------| pre | next |------| .. |------| pre | next |------| |------+------. *
* | | |------|scrolu|------|------| play | .. | play |------|------| 8 |------| - | | *
* |------+------| |------| | bt4 |------| .. |------| next | 7 |------| 9 |------+------| *
* | | |------|scrold|------|------| bt5 | .. | pre |------|------| 5 |------| + | | *
* |------+------| |------|mclic | rclic|------| .. |------| rclic| 4 |------| 6 |------+------| *
* | | |------| |------|------| lclic| .. | lclic|------|------| 2 |------| * | | *
* |------+------| |------| | mclck|------|-------------. .. .-------------|------| mclic| 1 |------| 3 |------+------| *
* | | |------| |------|------| | | | .. | | | |------|------| num. |------| / | | *
* |------+------| |------| | |------|------|------ .. ------|------|------| | 0 |------| . |------+------| *
* | | |------/ \-------------| | | .. | | |-------------/ \------| , | | *
* `-------------/ \-------------/ .. \-------------/ \-------------/ *
*
*/
[_MEDIA] = KEYMAP(
RESET, KC_SLCK, KC_PAUS, KC_MUTE, KC_VOLD, KC_VOLU, KC_MUTE, KC_VOLD, KC_VOLU, KC_PSCR, KC_CALC, KC_NLCK, \
KC_TRNS, KC_TRNS, KC_TRNS, KC_MSTP, KC_MPRV, KC_MNXT, KC_MPLY, KC_MPLY, KC_MPRV, KC_MNXT, KC_MSTP, KC_TRNS, KC_PMNS, KC_TRNS, \
KC_TRNS, KC_TRNS, KC_TRNS, KC_WH_U, KC_TRNS, KC_BTN4, KC_BTN5, KC_BTN4, KC_BTN5, KC_KP_7, KC_KP_8, KC_KP_9, KC_PPLS, KC_TRNS, \
KC_TRNS, KC_TRNS, KC_TRNS, KC_WH_D, KC_BTN3, KC_BTN2, KC_BTN1, KC_BTN1, KC_BTN2, KC_KP_4, KC_KP_5, KC_KP_6, KC_PAST, KC_TRNS, \
KC_TRNS, M(M_UN), M(M_CUT),M(M_CP), M(M_PS), KC_BTN3, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_BTN3, KC_KP_1, KC_KP_2, KC_KP_3, KC_PSLS, KC_TRNS, \
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_KP_0, KC_PDOT, BP_DOT, BP_COMM, KC_TRNS, \
//left pedals
KC_BTN3, M(M_RP), KC_TRNS, \
//right pedals
KC_BTN3, M(M_RP), KC_TRNS \
),
/* TRNS - skeleton for laters
* ,------. .. ,------. *
* ,------| |-------------. .. ,-------------| |------. *
* ,------| |------| | |------. .. ,------| | |------| |------. *
* | |------| |------|------| | .. | |------|------| |------| | *
* ,------+------| |------| | |------| .. |------| | |------| |------+------. *
* | | |------| |------|------| | .. | |------|------| |------| | | *
* |------+------| |------| | |------| .. |------| | |------| |------+------| *
* | | |------| |------|------| | .. | |------|------| |------| | | *
* |------+------| |------| | |------| .. |------| | |------| |------+------| *
* | | |------| |------|------| | .. | |------|------| |------| | | *
* |------+------| |------| | |------|-------------. .. .-------------|------| | |------| |------+------| *
* | | |------| |------|------| | | | .. | | | |------|------| |------| | | *
* |------+------| |------| | |------|------|------ .. ------|------|------| | |------| |------+------| *
* | | |------/ \-------------| | | .. | | |-------------/ \------| | | *
* `-------------/ \-------------/ .. \-------------/ \-------------/ *
*
*/
[_TRNS] = KEYMAP(
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, \
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, \
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, \
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, \
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, \
KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, KC_TRNS, \
//left pedals
KC_BTN3, M(M_RP), KC_TRNS, \
//right pedals
KC_BTN3, M(M_RP), KC_TRNS \
),
};
const uint16_t PROGMEM fn_actions[] = {
};
void hold_shift(void) {
shift_count = shift_count + 1;
register_code(KC_LSHIFT);
}
void release_shift(void) {
shift_count = shift_count - 1;
if(shift_count <= 0){
unregister_code(KC_LSHIFT);
shift_count = 0;
}
}
void press_space(void) {
if(shift_count > 0) unregister_code (KC_LSHIFT);
register_code (KC_SPACE);
unregister_code (KC_SPACE);
if(shift_count > 0) register_code (KC_LSHIFT);
}
void press_enter(void) {
if(shift_count > 0) unregister_code (KC_LSHIFT);
register_code (KC_ENT);
unregister_code (KC_ENT);
if(shift_count > 0) register_code (KC_LSHIFT);
}
void press_underscore(void) {
if(shift_count > 0) unregister_code (KC_LSHIFT);
register_code ((unsigned char) BP_UNDS);
unregister_code ((unsigned char) BP_UNDS);
if(shift_count > 0) register_code (KC_LSHIFT);
}
const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
{
switch(id) {
case M_LP: //left pedal
if (record->event.pressed) {
layer_on(1);
register_code (KC_SLCK);
key_timer_left_pedal = timer_read(); // if the key is being pressed, we start the timer.
} else {
if (timer_elapsed(key_timer_left_pedal) < KEY_DELAY) {
mousekey_on (KC_BTN2);
mousekey_send();
mousekey_off (KC_BTN2);
mousekey_send();
}
unregister_code (KC_SLCK);
layer_off(1);
}
break;
case M_RP: //right pedal
if (record->event.pressed) {
layer_on(2);
key_timer_right_pedal = timer_read(); // if the key is being pressed, we start the timer.
} else {
if (timer_elapsed(key_timer_right_pedal) < PEDAL_DELAY) {
mousekey_on (KC_BTN1);
mousekey_send();
mousekey_off (KC_BTN1);
mousekey_send();
}
layer_off(2);
}
break;
case M_SF: // shift, using macro to keep track of shift state and avoid inserting nbsp by mistake
if (record->event.pressed) {
hold_shift();
} else {
release_shift();
}
break;
case M_SFS: // shift when held, space when tapped
if (record->event.pressed) {
hold_shift();
key_timer_shift = timer_read(); // if the key is being pressed, we start the timer.
} else {
if (timer_elapsed(key_timer_shift) < KEY_DELAY) {
press_space();
}
release_shift();
}
break;
case M_SFU: // shift when held, _ when tapped
if (record->event.pressed) {
hold_shift();
key_timer_shift = timer_read(); // if the key is being pressed, we start the timer.
} else {
if (timer_elapsed(key_timer_shift) < KEY_DELAY) {
press_space();
}
release_shift();
}
break;
case M_L1E: // L1 when held, space when tapped
if (record->event.pressed) {
layer_on(1);
key_timer_1 = timer_read(); // if the key is being pressed, we start the timer.
} else {
if (timer_elapsed(key_timer_1) < KEY_DELAY) {
press_enter();
}
layer_off(1);
}
break;
case L2INS: //activate layer 2, if released before 100ms trigger INS. basicaly equivalent to LT(2, KC_INS) but without delay for activation of layer 2
if (record->event.pressed) {
layer_on(2);
key_timer_2 = timer_read(); // if the key is being pressed, we start the timer.
} else {
if (timer_elapsed(key_timer_2) < KEY_DELAY) {
register_code (KC_INS);
unregister_code (KC_INS);
}
l2_locked = 0;
layer_off(2);
}
break;
case L2LOC: //lock L2
if (record->event.pressed) {
key_timer_2 = timer_read(); // if the key is being pressed, we start the timer.
layer_on(2);
} else {
if (timer_elapsed(key_timer_2) < KEY_DELAY && l2_locked == 0) {
l2_locked = 1;
layer_on(2);
} else {
l2_locked = 0;
layer_off(2);
}
}
break;
case M_UN: // undo
if (record->event.pressed) {
register_code(KC_LCTL);
register_code(BP_Z);
unregister_code(BP_Z);
unregister_code(KC_LCTL);
}
break;
case M_CUT: // cut
if (record->event.pressed) {
register_code(KC_LCTL);
register_code(BP_X);
unregister_code(BP_X);
unregister_code(KC_LCTL);
}
break;
case M_CP: // copy
if (record->event.pressed) {
register_code(KC_LCTL);
register_code(BP_C);
unregister_code(BP_C);
unregister_code(KC_LCTL);
}
break;
case M_PS: // paste
if (record->event.pressed) {
register_code(KC_LCTL);
register_code(BP_V);
unregister_code(BP_V);
unregister_code(KC_LCTL);
}
break;
case M_SE: // search
if (record->event.pressed) {
register_code(KC_LCTL);
register_code(BP_F);
unregister_code(BP_F);
unregister_code(KC_LCTL);
}
break;
}
return MACRO_NONE;
};
void action_function(keyrecord_t *record, uint8_t id, uint8_t opt) {
}
void matrix_init_user(void) {
}
// Bleah globals need to be initialized.
uint8_t old_layer=_BASE;
void matrix_scan_user(void) {
uint8_t layer = biton32(layer_state);
frenchdev_led_1_off();
frenchdev_led_2_off();
switch (layer) {
case _BASE:
frenchdev_led_2_on();
break;
case _SYMBOLS:
frenchdev_led_1_on();
break;
case _MEDIA:
frenchdev_led_1_on();
frenchdev_led_2_on();
default:
// none
break;
}
}
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
return true;
}
void led_set_user(uint8_t usb_led) {
if (usb_led & (1<<USB_LED_CAPS_LOCK)){
frenchdev_led_3_on();
} else {
frenchdev_led_3_off();
}
return ;
}

@ -0,0 +1,13 @@
layout :
[default layout](http://i.imgur.com/r2Nvr4p.png)
the thing when finished :
http://imgur.com/a/6FY8v
concept and mockup:
http://imgur.com/a/R0vvs
to build :
docker run --rm -e keymap=default -e keyboard=frenchdev --rm -v D:/Repositories/qmk:/qmk:rw edasque/qmk_firmware

@ -0,0 +1,396 @@
/*
Note to self: adapted from ergodox EZ matrix
The "column" and "row" in here actually refers to the opposite on the keyboard
see definition of KEYMAP in v1.h, the grid is transposed so that a "row" in here is actually a "column" on the physical keyboard
Nicolas
Note for ErgoDox EZ customizers: Here be dragons!
This is not a file you want to be messing with.
All of the interesting stuff for you is under keymaps/ :)
Love, Erez
Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com>
Copyright 2013 Nicolas Poirey <nicolas.poirey@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "wait.h"
#include "action_layer.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "frenchdev.h"
#include "i2cmaster.h"
#ifdef DEBUG_MATRIX_SCAN_RATE
#include "timer.h"
#endif
/*
* This constant define not debouncing time in msecs, but amount of matrix
* scan loops which should be made to get stable debounced results.
*
* On Ergodox matrix scan rate is relatively low, because of slow I2C.
* Now it's only 317 scans/second, or about 3.15 msec/scan.
* According to Cherry specs, debouncing time is 5 msec.
*
* And so, there is no sense to have DEBOUNCE higher than 2.
*/
#ifndef DEBOUNCE
# define DEBOUNCE 5
#endif
static uint8_t debouncing = DEBOUNCE;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_row_t read_cols(uint8_t row);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
static uint8_t mcp23018_reset_loop;
#ifdef DEBUG_MATRIX_SCAN_RATE
uint32_t matrix_timer;
uint32_t matrix_scan_count;
#endif
__attribute__ ((weak))
void matrix_init_user(void) {}
__attribute__ ((weak))
void matrix_scan_user(void) {}
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
// initialize row and col
debug_enable = true;
debug_matrix = true;
debug_keyboard = true;
debug_mouse = true;
mcp23018_status = init_mcp23018();
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
#ifdef DEBUG_MATRIX_SCAN_RATE
matrix_timer = timer_read32();
matrix_scan_count = 0;
#endif
matrix_init_quantum();
}
void matrix_power_up(void) {
mcp23018_status = init_mcp23018();
unselect_rows();
init_cols();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
#ifdef DEBUG_MATRIX_SCAN_RATE
matrix_timer = timer_read32();
matrix_scan_count = 0;
#endif
}
uint8_t matrix_scan(void)
{
if (mcp23018_status) { // if there was an error
if (++mcp23018_reset_loop == 0) {
// since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
// this will be approx bit more frequent than once per second
print("trying to reset mcp23018\n");
mcp23018_status = init_mcp23018();
if (mcp23018_status) {
print("left side not responding\n");
} else {
print("left side attached\n");
frenchdev_blink_all_leds();
}
}
}
#ifdef DEBUG_MATRIX_SCAN_RATE
matrix_scan_count++;
uint32_t timer_now = timer_read32();
if (TIMER_DIFF_32(timer_now, matrix_timer)>1000) {
print("matrix scan frequency: ");
pdec(matrix_scan_count);
print("\n");
matrix_timer = timer_now;
matrix_scan_count = 0;
}
#endif
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
select_row(i);
wait_us(30); // without this wait read unstable value.
matrix_row_t cols = read_cols(i);
if (matrix_debouncing[i] != cols) {
matrix_debouncing[i] = cols;
if (debouncing) {
debug("bounce!: "); debug_hex(debouncing); debug("\n");
}
debouncing = DEBOUNCE;
}
unselect_rows();
}
if (debouncing) {
if (--debouncing) {
wait_us(1);
// this should be wait_ms(1) but has been left as-is at EZ's request
} else {
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = matrix_debouncing[i];
}
}
}
matrix_scan_quantum();
return 1;
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
/* Column pin configuration
*
* Teensy
* col: 0 1 2 3 4 5
* pin: F0 F1 F4 F5 F6 F7
*
* MCP23018
* col: 0 1 2 3 4 5
* pin: B5 B4 B3 B2 B1 B0
*/
static void init_cols(void)
{
// init on mcp23018
// not needed, already done as part of init_mcp23018()
// init on teensy
// Input with pull-up(DDR:0, PORT:1)
DDRF &= ~(1<<7 | 1<<6 | 1<<5 | 1<<4 | 1<<1 | 1<<0);
PORTF |= (1<<7 | 1<<6 | 1<<5 | 1<<4 | 1<<1 | 1<<0);
}
static matrix_row_t read_cols(uint8_t row)
{
if (row < 8) {
if (mcp23018_status) { // if there was an error
return 0;
} else {
uint8_t data = 0;
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPIOB); if (mcp23018_status) goto out;
mcp23018_status = i2c_start(I2C_ADDR_READ); if (mcp23018_status) goto out;
data = i2c_readNak();
data = ~data;
out:
i2c_stop();
return data;
}
} else {
// read from teensy
return
(PINF&(1<<0) ? 0 : (1<<0)) |
(PINF&(1<<1) ? 0 : (1<<1)) |
(PINF&(1<<4) ? 0 : (1<<2)) |
(PINF&(1<<5) ? 0 : (1<<3)) |
(PINF&(1<<6) ? 0 : (1<<4)) |
(PINF&(1<<7) ? 0 : (1<<5)) ;
}
}
/* Row pin configuration
*
* Teensy
* row: 7 8 9 10 11 12 13
* pin: B0 B1 B2 B3 D2 D3 C6
*
* MCP23018
* row: 0 1 2 3 4 5 6
* pin: A0 A1 A2 A3 A4 A5 A6
*/
static void unselect_rows(void)
{
// unselect on mcp23018
if (mcp23018_status) { // if there was an error
// do nothing
} else {
// set all rows hi-Z : 1
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write( 0xFF
& ~(0<<8)
); if (mcp23018_status) goto out;
out:
i2c_stop();
}
// unselect on teensy
// Hi-Z(DDR:0, PORT:0) to unselect
DDRB &= ~(1<<0 | 1<<1 | 1<<2 | 1<<3);
PORTB &= ~(1<<0 | 1<<1 | 1<<2 | 1<<3);
DDRD &= ~(1<<2 | 1<<3);
PORTD &= ~(1<<2 | 1<<3);
DDRC &= ~(1<<6 | 1<<7);
PORTC &= ~(1<<6 | 1<<7);
}
static void select_row(uint8_t row)
{
if (row < 8) {
// select on mcp23018
if (mcp23018_status) { // if there was an error
// do nothing
} else {
// set active row low : 0
// set other rows hi-Z : 1
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write( 0xFF & ~(1<<row)
& ~(0<<8)
); if (mcp23018_status) goto out;
out:
i2c_stop();
}
} else {
// select on teensy
// Output low(DDR:1, PORT:0) to select
switch (row) {
case 8:
DDRB |= (1<<0);
PORTB &= ~(1<<0);
break;
case 9:
DDRB |= (1<<1);
PORTB &= ~(1<<1);
break;
case 10:
DDRB |= (1<<2);
PORTB &= ~(1<<2);
break;
case 11:
DDRB |= (1<<3);
PORTB &= ~(1<<3);
break;
case 12:
DDRD |= (1<<2);
PORTD &= ~(1<<3);
break;
case 13:
DDRD |= (1<<3);
PORTD &= ~(1<<3);
break;
case 14:
DDRC |= (1<<6);
PORTC &= ~(1<<6);
break;
case 15:
DDRC |= (1<<7);
PORTC &= ~(1<<7);
break;
}
}
}

@ -0,0 +1,102 @@
# Frenchdev : My take on a splitted keyboard for dev and french language
Concept based on
- [ergodox](https://ergodox-ez.com/)
- [katy](https://deskthority.net/workshop-f7/katy-keyboard-or-k80cs-key80-contoured-split-t8524.html)
with the added possibility to connect up to 6 external switches like pedals,
and somewhat like the katy, not all keys are on the same level for easier reach.
###Photos
- [default layout](http://i.imgur.com/r2Nvr4p.png)
- [editable layout on keyboard layout editor](http://www.keyboard-layout-editor.com/#/gists/4480e3ab8026eb7c710a7e22203ef4aa) (keys placement is NOT precise on this)
- [the thing when finished](http://imgur.com/a/6FY8v)
- [concept and cardboard mockup](http://imgur.com/a/R0vvs)
##Build instructions
docker run --rm -e keymap=default -e keyboard=frenchdev --rm -v D:/Repositories/qmk:/qmk:rw edasque/qmk_firmware
##Laser-cuttable file
There is intentionnaly no hole for the TRRS connector, you are supposed to use a drill for it.
This way if you don't want to use the pedals you don't have a useless hole. Plus it's cleaner.
http://qmk.fm/frenchdev/frenchdev_v1_lasercut_template.svg
##Side stickers
You can find my original file here : http://qmk.fm/frenchdev/example_printable_stickers.svg
I used it when training but now I use blanks and the layout is different.
I still uploaded it because I think it can be a good jumpstart for any temporary stickers on the
side of keycaps.
##List of parts
- I2C mcp23018
- [teensy 2](https://www.pjrc.com/store/teensy.html)
- 3 LED, 5mm tall with flat head
- 3 330 ohm resistor
- 2 470 ohm resistor
- 2 TRRS connectors
- 1 [micro usb breakout board](http://www.ebay.com/itm/-/201387922085?)
- 88 cherry/gateron switchs
- 94 4148 diodes
- 34 R4 keys
- 14 R3 keys
- 20 R2 keys
- 22 R1 keys
if you fancy adding pedals :
[these are good enough and cheap](https://www.amazon.fr/gp/product/B00V7WITKI/ref=oh_aui_detailpage_o04_s00?ie=UTF8&psc=1). You also need a RCA connector for each of those to replace the included cable
If you (or your coworkers) find them too loud you can replace the switch inside them.
For once we don't really care about what's inside :)
##Various indications
The PHYSICAL rows and columns are connected as such :
on right hand (slave) :
I2C mcp23018
.------- --------.
GND -| 1 VSS \_/ NC 28 |
| 2 NC A7 27 |- C15
R5 -| 3 B0 A6 26 |- C14
R4 -| 4 B1 A5 25 |- C13
R3 -| 5 B2 A4 24 |- C12
R2 -| 6 B3 A3 23 |- C11
R1 -| 7 B4 A2 22 |- C10
R0 -| 8 B5 A1 21 |- C9
| 9 B6 A0 20 |- C8
| 10 B7 INTA 19 |
VCC -| 11 VDD INTB 18 |
SCL -| 12 SCL NC 17 |
SDA -| 13 SDA RST 16 |- VCC
| 14 NC ADDR 15 |- GND
`------------------'
and on left hand (main) :
TEENSY
.------------------.
| GND VCC |
C7 -| B0 F0 |- R5
C6 -| B1 F1 |- R4
C5 -| B2 F4 |- R3
C4 -| B3 F5 |- R2
LEDC -| B7 F6 |- R1
SCL -| D0 F7 |- R0
SDA -| D1 B6 |- LEDB
C3 -| D2 B5 |- LEDA
C2 -| D3 B4 |
C1 -| C6 D7 |
C0 -| C7 D6 |- GND
| D5 D4 |
| VCC RST |
| E6 GND |
`------------------'
We use pull up resistor for SCL and VDA, see https://github.com/ErgoDox-EZ/docs/blob/master/ErgoDox%20EZ%20Schematic.pdf for example
the connector is a standard TRRS (jack with audio + mic)
Diode direction is row to column

@ -0,0 +1,92 @@
#----------------------------------------------------------------------------
# On command line:
#
# make = Make software.
#
# make clean = Clean out built project files.
#
# That's pretty much all you need. To compile, always go make clean,
# followed by make.
#
# For advanced users only:
# make teensy = Download the hex file to the device, using teensy_loader_cli.
# (must have teensy_loader_cli installed).
#
#----------------------------------------------------------------------------
# # project specific files
SRC = twimaster.c \
matrix.c
# MCU name
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Boot Section Size in *bytes*
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
OPT_DEFS += -DBOOTLOADER_SIZE=512
# Build Options
# comment out to disable the options.
#
BOOTMAGIC_ENABLE ?= no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE ?= yes # Mouse keys(+4700)
EXTRAKEY_ENABLE ?= yes # Audio control and System control(+450)
CONSOLE_ENABLE ?= yes # Console for debug(+400)
COMMAND_ENABLE ?= yes # Commands for debug and configuration
CUSTOM_MATRIX ?= yes # Custom matrix file (taken and adapted from the ErgoDox EZ to handle custom number of columns)
SLEEP_LED_ENABLE ?= no # Breathing sleep LED during USB suspend
NKRO_ENABLE ?= yes # USB Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
UNICODE_ENABLE ?= yes # Unicode
BACKLIGHT_ENABLE ?= no # Enable keyboard backlight functionality on B7 by default
MIDI_ENABLE ?= no # MIDI controls
UNICODE_ENABLE ?= no # Unicode
BLUETOOTH_ENABLE ?= no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE ?= no # Audio output on port C6
RGBLIGHT_ENABLE = no
API_SYSEX_ENABLE ?= no
#ifndef QUANTUM_DIR
# include ../../../Makefile
#endif

@ -0,0 +1,208 @@
/*************************************************************************
* Title: I2C master library using hardware TWI interface
* Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury
* File: $Id: twimaster.c,v 1.3 2005/07/02 11:14:21 Peter Exp $
* Software: AVR-GCC 3.4.3 / avr-libc 1.2.3
* Target: any AVR device with hardware TWI
* Usage: API compatible with I2C Software Library i2cmaster.h
**************************************************************************/
#include <inttypes.h>
#include <compat/twi.h>
#include <i2cmaster.h>
/* define CPU frequency in Mhz here if not defined in Makefile */
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
/* I2C clock in Hz */
#define SCL_CLOCK 400000L
/*************************************************************************
Initialization of the I2C bus interface. Need to be called only once
*************************************************************************/
void i2c_init(void)
{
/* initialize TWI clock
* minimal values in Bit Rate Register (TWBR) and minimal Prescaler
* bits in the TWI Status Register should give us maximal possible
* I2C bus speed - about 444 kHz
*
* for more details, see 20.5.2 in ATmega16/32 secification
*/
TWSR = 0; /* no prescaler */
TWBR = 10; /* must be >= 10 for stable operation */
}/* i2c_init */
/*************************************************************************
Issues a start condition and sends address and transfer direction.
return 0 = device accessible, 1= failed to access device
*************************************************************************/
unsigned char i2c_start(unsigned char address)
{
uint8_t twst;
// send START condition
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
// wait until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_START) && (twst != TW_REP_START)) return 1;
// send device address
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
// wail until transmission completed and ACK/NACK has been received
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return 1;
return 0;
}/* i2c_start */
/*************************************************************************
Issues a start condition and sends address and transfer direction.
If device is busy, use ack polling to wait until device is ready
Input: address and transfer direction of I2C device
*************************************************************************/
void i2c_start_wait(unsigned char address)
{
uint8_t twst;
while ( 1 )
{
// send START condition
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
// wait until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_START) && (twst != TW_REP_START)) continue;
// send device address
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
// wail until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst == TW_MT_SLA_NACK )||(twst ==TW_MR_DATA_NACK) )
{
/* device busy, send stop condition to terminate write operation */
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
// wait until stop condition is executed and bus released
while(TWCR & (1<<TWSTO));
continue;
}
//if( twst != TW_MT_SLA_ACK) return 1;
break;
}
}/* i2c_start_wait */
/*************************************************************************
Issues a repeated start condition and sends address and transfer direction
Input: address and transfer direction of I2C device
Return: 0 device accessible
1 failed to access device
*************************************************************************/
unsigned char i2c_rep_start(unsigned char address)
{
return i2c_start( address );
}/* i2c_rep_start */
/*************************************************************************
Terminates the data transfer and releases the I2C bus
*************************************************************************/
void i2c_stop(void)
{
/* send stop condition */
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
// wait until stop condition is executed and bus released
while(TWCR & (1<<TWSTO));
}/* i2c_stop */
/*************************************************************************
Send one byte to I2C device
Input: byte to be transfered
Return: 0 write successful
1 write failed
*************************************************************************/
unsigned char i2c_write( unsigned char data )
{
uint8_t twst;
// send data to the previously addressed device
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
// wait until transmission completed
while(!(TWCR & (1<<TWINT)));
// check value of TWI Status Register. Mask prescaler bits
twst = TW_STATUS & 0xF8;
if( twst != TW_MT_DATA_ACK) return 1;
return 0;
}/* i2c_write */
/*************************************************************************
Read one byte from the I2C device, request more data from device
Return: byte read from I2C device
*************************************************************************/
unsigned char i2c_readAck(void)
{
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
while(!(TWCR & (1<<TWINT)));
return TWDR;
}/* i2c_readAck */
/*************************************************************************
Read one byte from the I2C device, read is followed by a stop condition
Return: byte read from I2C device
*************************************************************************/
unsigned char i2c_readNak(void)
{
TWCR = (1<<TWINT) | (1<<TWEN);
while(!(TWCR & (1<<TWINT)));
return TWDR;
}/* i2c_readNak */
Loading…
Cancel
Save