speaker working, midi out

example_keyboards
Jack Humbert 10 years ago
parent d63c2e3995
commit 91176d854b

@ -52,7 +52,8 @@ TARGET_DIR = .
SRC = keymap_common.c \
matrix.c \
led.c \
backlight.c
backlight.c \
beeps.c
ifdef KEYMAP
SRC := keymaps/keymap_$(KEYMAP).c $(SRC)

@ -7,36 +7,19 @@
#define PI 3.14159265
#define CHANNEL OCR1C
volatile uint16_t sample;
uint16_t lastSample;
const int sounddata_length=200;
const unsigned char sounddata_data[] PROGMEM = {128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 129, 127, 129, 128, 127, 133,
117, 109, 125, 121, 116, 132, 140, 126, 114, 114, 116, 120, 114, 93, 73, 66, 76, 116, 142, 129,
128, 129, 120, 119, 118, 104, 87, 123, 181, 194, 196, 198, 189, 176, 160, 162, 172, 164, 164, 183,
197, 188, 168, 167, 170, 165, 185, 209, 206, 196, 196, 199, 185, 162, 156, 167, 176, 173, 170, 166,
151, 142, 140, 134, 130, 127, 113, 86, 67, 66, 69, 75, 73, 75, 86, 90, 91, 84, 65, 48,
41, 30, 26, 56, 91, 88, 72, 70, 73, 82, 89, 73, 57, 60, 74, 89, 92, 77, 63, 60,
53, 47, 56, 64, 63, 61, 56, 54, 52, 36, 16, 22, 51, 66, 67, 70, 76, 88, 99, 92,
77, 74, 85, 100, 106, 97, 83, 85, 96, 108, 133, 160, 164};
void delay_us(int count) {
while(count--) {
_delay_us(1);
}
}
int voices = 0;
double frequency = 0;
int volume = 0;
double frequencies[8] = {0, 0, 0, 0, 0, 0, 0, 0};
int volumes[8] = {0, 0, 0, 0, 0, 0, 0, 0};
void beeps() {
// DDRB |= (1<<7);
// PORTB &= ~(1<<7);
@ -120,119 +103,118 @@ play_notes();
}
void play_note(float freq, int length) {
DDRB |= (1<<7);
PORTB &= ~(1<<7);
void send_freq(double freq, int vol) {
int duty = (((double)F_CPU) / freq);
ICR3 = duty; // Set max to the period
OCR3A = duty >> (0x10 - vol); // Set compare to half the period
}
if (freq > 0) {
int frequency = 1000000/freq;
ICR1 = frequency; // Set max to the period
OCR1C = frequency >> 1; // Set compare to half the period
void stop_all_notes() {
voices = 0;
TCCR3A = 0;
TCCR3B = 0;
frequency = 0;
TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010;
TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
for (int i = 0; i < 8; i++) {
frequencies[i] = 0;
volumes[i] = 0;
}
for (int i = 0; i < length; i++) {
_delay_us(50000);
}
TCCR1A &= ~(_BV(COM1C1));
void stop_note(double freq) {
for (int i = 7; i >= 0; i--) {
if (frequencies[i] == freq) {
frequencies[i] = 0;
volumes[i] = 0;
for (int j = i; (j < 7); j++) {
frequencies[j] = frequencies[j+1];
frequencies[j+1] = 0;
volumes[j] = volumes[j+1];
volumes[j+1] = 0;
}
// This is called at 8000 Hz to load the next sample.
ISR(TIMER1_COMPA_vect) {
if (sample >= sounddata_length) {
if (sample == sounddata_length + lastSample) {
TIMSK1 &= ~_BV(OCIE1A);
// Disable the per-sample timer completely.
TCCR1B &= ~_BV(CS10);
}
else {
OCR1C = sounddata_length + lastSample - sample;
}
voices--;
if (voices == 0) {
TCCR3A = 0;
TCCR3B = 0;
frequency = 0;
} else {
double freq = frequencies[voices - 1];
int vol = volumes[voices - 1];
if (frequency < freq) {
for (double f = frequency; f <= freq; f += ((freq - frequency) / 500.0)) {
send_freq(f, vol);
}
else {
OCR1C = pgm_read_byte(&sounddata_data[sample]);
} else if (frequency > freq) {
for (double f = frequency; f >= freq; f -= ((frequency - freq) / 500.0)) {
send_freq(f, vol);
}
}
send_freq(freq, vol);
frequency = freq;
volume = vol;
}
++sample;
}
void play_notes() {
// Set up Timer 2 to do pulse width modulation on the speaker
// pin.
DDRB |= (1<<7);
PORTB &= ~(1<<7);
// Use internal clock (datasheet p.160)
// ASSR &= ~(_BV(EXCLK) | _BV(AS2));
// Set fast PWM mode (p.157)
TCCR1A |= _BV(WGM21) | _BV(WGM20);
TCCR1B &= ~_BV(WGM22);
// Do non-inverting PWM on pin OC2A (p.155)
// On the Arduino this is pin 11.
TCCR1A = (TCCR2A | _BV(COM2A1)) & ~_BV(COM2A0);
TCCR1A &= ~(_BV(COM2B1) | _BV(COM2B0));
// No prescaler (p.158)
TCCR1B = (TCCR1B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);
// Set initial pulse width to the first sample.
OCR1A = pgm_read_byte(&sounddata_data[0]);
cli();
void play_note(double freq, int vol) {
// Set CTC mode (Clear Timer on Compare Match) (p.133)
// Have to set OCR1A *after*, otherwise it gets reset to 0!
TCCR2B = (TCCR2B & ~_BV(WGM13)) | _BV(WGM12);
TCCR2A = TCCR2A & ~(_BV(WGM11) | _BV(WGM10));
if (freq > 0) {
DDRC |= (1<<6);
// No prescaler (p.134)
TCCR2B = (TCCR2B & ~(_BV(CS12) | _BV(CS11))) | _BV(CS10);
TCCR3A = (1 << COM3A1) | (0 << COM3A0) | (1 << WGM31) | (0 << WGM30);
TCCR3B = (1 << WGM33) | (1 << WGM32) | (0 << CS32) | (1 << CS31) | (0 << CS30);
// Set the compare register (OCR1A).
// OCR1A is a 16-bit register, so we have to do this with
// interrupts disabled to be safe.
// OCR2A = F_CPU / SAMPLE_RATE; // 16e6 / 8000 = 2000
OCR2A = 2000;
if (frequency != 0) {
if (frequency < freq) {
for (double f = frequency; f <= freq; f += ((freq - frequency) / 500.0)) {
send_freq(f, vol);
}
} else if (frequency > freq) {
for (double f = frequency; f >= freq; f -= ((frequency - freq) / 500.0)) {
send_freq(f, vol);
}
}
}
send_freq(freq, vol);
frequency = freq;
volume = vol;
// Enable interrupt when TCNT1 == OCR1A (p.136)
TIMSK1 |= _BV(OCIE2A);
frequencies[voices] = frequency;
volumes[voices] = volume;
voices++;
}
// ICR3 = 0xFFFF;
// for (int i = 0; i < 10000; i++) {
// OCR3A = round((sin(i*freq)*.5)+.5)*0xFFFF;
// // _delay_us(50);
// }
sample = 0;
sei();
// TCCR3A = 0;
// TCCR3B = 0;
}
void note(int x, float length) {
DDRB |= (1<<1);
DDRC |= (1<<6);
int t = (int)(440*pow(2,-x/12.0)); // starting note
for (int y = 0; y < length*1000/t; y++) { // note length
PORTB |= (1<<1);
PORTC |= (1<<6);
delay_us(t);
PORTB &= ~(1<<1);
PORTC &= ~(1<<6);
delay_us(t);
}
PORTB &= ~(1<<1);
PORTC &= ~(1<<6);
}
void true_note(float x, float y, float length) {
for (uint32_t i = 0; i < length * 50; i++) {
uint32_t v = (uint32_t) (round(sin(PI*2*i*640000*pow(2, x/12.0))*.5+1 + sin(PI*2*i*640000*pow(2, y/12.0))*.5+1) / 2 * pow(2, 8));
for (int u = 0; u < 8; u++) {
if (v & (1 << u) && !(PORTB&(1<<1)))
PORTB |= (1<<1);
else if (PORTB&(1<<1))
PORTB &= ~(1<<1);
if (v & (1 << u) && !(PORTC&(1<<6)))
PORTC |= (1<<6);
else if (PORTC&(1<<6))
PORTC &= ~(1<<6);
}
}
PORTB &= ~(1<<1);
PORTC &= ~(1<<6);
}

@ -6,4 +6,6 @@
void note(int x, float length);
void beeps();
void true_note(float x, float y, float length);
void play_note(float freq, int length);
void play_note(double freq, int vol);
void stop_note(double freq);
void stop_all_notes();

@ -22,7 +22,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFEED
#define PRODUCT_ID 0x6061
#define PRODUCT_ID 0x6060
#define DEVICE_VER 0x0001
#define MANUFACTURER Ortholinear Keyboards
#define PRODUCT The Planck Keyboard
@ -61,10 +61,10 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* disable debug print */
// #define NO_DEBUG
#define NO_DEBUG
/* disable print */
// #define NO_PRINT
#define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER

@ -50,7 +50,9 @@ void action_function(keyrecord_t *record, uint8_t id, uint8_t opt)
if (record->event.pressed) {
midi_send_noteon(&midi_device, record->event.key.row, starting_note + SCALE[record->event.key.col], 127);
play_note(((double)261.6)*pow(2.0, 2.0)*pow(2.0,SCALE[record->event.key.col]/12.0+(record->event.key.row)), 0xF);
} else {
midi_send_noteoff(&midi_device, record->event.key.row, starting_note + SCALE[record->event.key.col], 127);
stop_note(((double)261.6)*pow(2.0, 2.0)*pow(2.0,SCALE[record->event.key.col]/12.0+(record->event.key.row)));
}
}

@ -2,6 +2,7 @@
#include "backlight.h"
#include "action_layer.h"
#include "keymap_midi.h"
#include "beeps.h"
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = { /* Qwerty */
@ -58,15 +59,22 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
switch(id) {
case 0:
if (record->event.pressed) {
// play_note(440, 20);
// register_code(KC_RSFT);
backlight_set(BACKLIGHT_LEVELS);
default_layer_and(0);
default_layer_or((1<<5));
// note(0+12, 20);
// note(0+24, 20);
} else {
// unregister_code(KC_RSFT);
// stop_note();
backlight_set(0);
default_layer_and(0);
default_layer_or(0);
// note(0+24, 20);
// note(0, 20);
// play_note(4, 20);
}
break;
}

@ -51,6 +51,7 @@
#include "descriptor.h"
#include "lufa.h"
#include <beeps.h>
// #include <LUFA/Version.h>
// #include <LUFA/Drivers/USB/USB.h>
@ -877,11 +878,21 @@ int main(void)
}
#ifdef MIDI_ENABLE
//echo data back
void fallthrough_callback(MidiDevice * device,
uint16_t cnt, uint8_t byte0, uint8_t byte1, uint8_t byte2){
//pass the data back to the device, using the general purpose send data
//function, any bytes after cnt are ignored
if (cnt == 3) {
switch (byte0 & 0xF0) {
case MIDI_NOTEON:
play_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(byte1 & 0x7F)/12.0), (byte2 & 0x7F) / 8);
break;
case MIDI_NOTEOFF:
stop_note(((double)261.6)*pow(2.0, -1.0)*pow(2.0,(byte1 & 0x7F)/12.0));
break;
}
}
if (byte0 == MIDI_STOP) {
stop_all_notes();
}
}
void cc_callback(MidiDevice * device,

Loading…
Cancel
Save