reverts #343 for the most part (#474)

example_keyboards
Jack Humbert 9 years ago committed by GitHub
parent 21ee3eb569
commit 8e88d55bfd

@ -26,32 +26,46 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "util.h" #include "util.h"
#include "matrix.h" #include "matrix.h"
#ifdef MATRIX_HAS_GHOST /* Set 0 if debouncing isn't needed */
# error "The universal matrix.c file cannot be used for this keyboard." /*
#endif * This constant define not debouncing time in msecs, but amount of matrix
* scan loops which should be made to get stable debounced results.
*
* On Ergodox matrix scan rate is relatively low, because of slow I2C.
* Now it's only 317 scans/second, or about 3.15 msec/scan.
* According to Cherry specs, debouncing time is 5 msec.
*
* And so, there is no sense to have DEBOUNCE higher than 2.
*/
#ifndef DEBOUNCING_DELAY #ifndef DEBOUNCING_DELAY
# define DEBOUNCING_DELAY 5 # define DEBOUNCING_DELAY 5
#endif #endif
static uint8_t debouncing = DEBOUNCING_DELAY;
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
/* matrix state */
#if DIODE_DIRECTION == COL2ROW /* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix[MATRIX_ROWS];
#else static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_col_t matrix[MATRIX_COLS];
#if DIODE_DIRECTION == ROW2COL
static matrix_row_t matrix_reversed[MATRIX_COLS];
static matrix_row_t matrix_reversed_debouncing[MATRIX_COLS];
#endif #endif
static int8_t debouncing_delay = -1;
#if DIODE_DIRECTION == COL2ROW #if MATRIX_COLS > 16
static void toggle_row(uint8_t row); #define SHIFTER 1UL
static matrix_row_t read_cols(void);
#else #else
static void toggle_col(uint8_t col); #define SHIFTER 1
static matrix_col_t read_rows(void);
#endif #endif
static matrix_row_t read_cols(void);
static void init_cols(void);
static void unselect_rows(void);
static void select_row(uint8_t row);
__attribute__ ((weak)) __attribute__ ((weak))
void matrix_init_quantum(void) { void matrix_init_quantum(void) {
matrix_init_kb(); matrix_init_kb();
@ -80,10 +94,12 @@ __attribute__ ((weak))
void matrix_scan_user(void) { void matrix_scan_user(void) {
} }
inline
uint8_t matrix_rows(void) { uint8_t matrix_rows(void) {
return MATRIX_ROWS; return MATRIX_ROWS;
} }
inline
uint8_t matrix_cols(void) { uint8_t matrix_cols(void) {
return MATRIX_COLS; return MATRIX_COLS;
} }
@ -113,161 +129,179 @@ uint8_t matrix_cols(void) {
// } // }
void matrix_init(void) { void matrix_init(void) {
/* frees PORTF by setting the JTD bit twice within four cycles */ // To use PORTF disable JTAG with writing JTD bit twice within four cycles.
#ifdef __AVR_ATmega32U4__ #ifdef __AVR_ATmega32U4__
MCUCR |= _BV(JTD); MCUCR |= _BV(JTD);
MCUCR |= _BV(JTD); MCUCR |= _BV(JTD);
#endif #endif
/* initializes the I/O pins */
#if DIODE_DIRECTION == COL2ROW // initialize row and col
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { unselect_rows();
/* DDRxn */ init_cols();
_SFR_IO8((row_pins[r] >> 4) + 1) |= _BV(row_pins[r] & 0xF);
toggle_row(r); // initialize matrix state: all keys off
} for (uint8_t i=0; i < MATRIX_ROWS; i++) {
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) { matrix[i] = 0;
/* PORTxn */ matrix_debouncing[i] = 0;
_SFR_IO8((col_pins[c] >> 4) + 2) |= _BV(col_pins[c] & 0xF);
}
#else
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
/* DDRxn */
_SFR_IO8((col_pins[c] >> 4) + 1) |= _BV(col_pins[c] & 0xF);
toggle_col(c);
}
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
/* PORTxn */
_SFR_IO8((row_pins[r] >> 4) + 2) |= _BV(row_pins[r] & 0xF);
} }
#endif
matrix_init_quantum(); matrix_init_quantum();
} }
uint8_t matrix_scan(void)
{
#if DIODE_DIRECTION == COL2ROW #if DIODE_DIRECTION == COL2ROW
uint8_t matrix_scan(void) { for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
static matrix_row_t debouncing_matrix[MATRIX_ROWS]; select_row(i);
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { wait_us(30); // without this wait read unstable value.
toggle_row(r); matrix_row_t cols = read_cols();
matrix_row_t state = read_cols(); if (matrix_debouncing[i] != cols) {
if (debouncing_matrix[r] != state) { matrix_debouncing[i] = cols;
debouncing_matrix[r] = state; if (debouncing) {
debouncing_delay = DEBOUNCING_DELAY; debug("bounce!: "); debug_hex(debouncing); debug("\n");
}
toggle_row(r);
}
if (debouncing_delay >= 0) {
dprintf("Debouncing delay remaining: %X\n", debouncing_delay);
--debouncing_delay;
if (debouncing_delay >= 0) {
wait_ms(1);
}
else {
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
matrix[r] = debouncing_matrix[r];
} }
debouncing = DEBOUNCING_DELAY;
} }
unselect_rows();
} }
matrix_scan_quantum();
return 1;
}
static void toggle_row(uint8_t row) {
/* PINxn */
_SFR_IO8((row_pins[row] >> 4)) = _BV(row_pins[row] & 0xF);
}
static matrix_row_t read_cols(void) { if (debouncing) {
matrix_row_t state = 0; if (--debouncing) {
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) { wait_us(1);
/* PINxn */ } else {
if (!(_SFR_IO8((col_pins[c] >> 4)) & _BV(col_pins[c] & 0xF))) { for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
state |= (matrix_row_t)1 << c; matrix[i] = matrix_debouncing[i];
}
} }
} }
return state;
}
matrix_row_t matrix_get_row(uint8_t row) {
return matrix[row];
}
#else #else
uint8_t matrix_scan(void) { for (uint8_t i = 0; i < MATRIX_COLS; i++) {
static matrix_col_t debouncing_matrix[MATRIX_COLS]; select_row(i);
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) { wait_us(30); // without this wait read unstable value.
toggle_col(c); matrix_row_t rows = read_cols();
matrix_col_t state = read_rows(); if (matrix_reversed_debouncing[i] != rows) {
if (debouncing_matrix[c] != state) { matrix_reversed_debouncing[i] = rows;
debouncing_matrix[c] = state; if (debouncing) {
debouncing_delay = DEBOUNCING_DELAY; debug("bounce!: "); debug_hex(debouncing); debug("\n");
}
debouncing = DEBOUNCING_DELAY;
} }
toggle_col(c); unselect_rows();
} }
if (debouncing_delay >= 0) {
dprintf("Debouncing delay remaining: %X\n", debouncing_delay); if (debouncing) {
--debouncing_delay; if (--debouncing) {
if (debouncing_delay >= 0) { wait_us(1);
wait_ms(1); } else {
} for (uint8_t i = 0; i < MATRIX_COLS; i++) {
else { matrix_reversed[i] = matrix_reversed_debouncing[i];
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) {
matrix[c] = debouncing_matrix[c];
} }
} }
} }
for (uint8_t y = 0; y < MATRIX_ROWS; y++) {
matrix_row_t row = 0;
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
row |= ((matrix_reversed[x] & (1<<y)) >> y) << x;
}
matrix[y] = row;
}
#endif
matrix_scan_quantum(); matrix_scan_quantum();
return 1; return 1;
} }
static void toggle_col(uint8_t col) { bool matrix_is_modified(void)
/* PINxn */ {
_SFR_IO8((col_pins[col] >> 4)) = _BV(col_pins[col] & 0xF); if (debouncing) return false;
return true;
} }
static matrix_col_t read_rows(void) { inline
matrix_col_t state = 0; bool matrix_is_on(uint8_t row, uint8_t col)
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { {
/* PINxn */ return (matrix[row] & ((matrix_row_t)1<col));
if (!(_SFR_IO8((row_pins[r] >> 4)) & _BV(row_pins[r] & 0xF))) { }
state |= (matrix_col_t)1 << r;
} inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
} }
return state;
} }
matrix_row_t matrix_get_row(uint8_t row) { uint8_t matrix_key_count(void)
matrix_row_t state = 0; {
matrix_col_t mask = (matrix_col_t)1 << row; uint8_t count = 0;
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) { for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
if (matrix[c] & mask) { count += bitpop16(matrix[i]);
state |= (matrix_row_t)1 << c;
}
} }
return state; return count;
} }
static void init_cols(void)
{
#if DIODE_DIRECTION == COL2ROW
for(int x = 0; x < MATRIX_COLS; x++) {
int pin = col_pins[x];
#else
for(int x = 0; x < MATRIX_ROWS; x++) {
int pin = row_pins[x];
#endif #endif
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF);
bool matrix_is_modified(void) { _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF);
if (debouncing_delay >= 0) return false; }
return true;
} }
bool matrix_is_on(uint8_t row, uint8_t col) { static matrix_row_t read_cols(void)
return matrix_get_row(row) & (matrix_row_t)1 << col; {
} matrix_row_t result = 0;
void matrix_print(void) { #if DIODE_DIRECTION == COL2ROW
dprintln("Human-readable matrix state:"); for(int x = 0; x < MATRIX_COLS; x++) {
for (uint8_t r = 0; r < MATRIX_ROWS; r++) { int pin = col_pins[x];
dprintf("State of row %X: %016b\n", r, bitrev16(matrix_get_row(r))); #else
for(int x = 0; x < MATRIX_ROWS; x++) {
int pin = row_pins[x];
#endif
result |= (_SFR_IO8(pin >> 4) & _BV(pin & 0xF)) ? 0 : (SHIFTER << x);
} }
return result;
} }
uint8_t matrix_key_count(void) { static void unselect_rows(void)
uint8_t count = 0; {
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { #if DIODE_DIRECTION == COL2ROW
count += bitpop16(matrix_get_row(r)); for(int x = 0; x < MATRIX_ROWS; x++) {
int pin = row_pins[x];
#else
for(int x = 0; x < MATRIX_COLS; x++) {
int pin = col_pins[x];
#endif
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF);
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF);
} }
return count; }
static void select_row(uint8_t row)
{
#if DIODE_DIRECTION == COL2ROW
int pin = row_pins[row];
#else
int pin = col_pins[row];
#endif
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF);
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF);
} }

@ -114,8 +114,10 @@ bool suspend_wakeup_condition(void)
matrix_power_up(); matrix_power_up();
matrix_scan(); matrix_scan();
matrix_power_down(); matrix_power_down();
if (matrix_key_count()) return true; for (uint8_t r = 0; r < MATRIX_ROWS; r++) {
return false; if (matrix_get_row(r)) return true;
}
return false;
} }
// run immediately after wakeup // run immediately after wakeup

@ -106,13 +106,15 @@ void bootmagic(void)
} }
} }
static bool scan_keycode(uint8_t keycode) { static bool scan_keycode(uint8_t keycode)
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { {
for (uint8_t r = 0; r < MATRIX_ROWS; r++) {
matrix_row_t matrix_row = matrix_get_row(r); matrix_row_t matrix_row = matrix_get_row(r);
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) { for (uint8_t c = 0; c < MATRIX_COLS; c++) {
if (matrix_row & (matrix_row_t)1 << c) { if (matrix_row & ((matrix_row_t)1<<c)) {
keypos_t key = (keypos_t){ .row = r, .col = c }; if (keycode == keymap_key_to_keycode(0, (keypos_t){ .row = r, .col = c })) {
if (keycode == keymap_key_to_keycode(0, key)) return true; return true;
}
} }
} }
} }
@ -124,4 +126,4 @@ bool bootmagic_scan_keycode(uint8_t keycode)
if (!scan_keycode(BOOTMAGIC_KEY_SALT)) return false; if (!scan_keycode(BOOTMAGIC_KEY_SALT)) return false;
return scan_keycode(keycode); return scan_keycode(keycode);
} }

@ -51,17 +51,20 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#endif #endif
#ifdef MATRIX_HAS_GHOST #ifdef MATRIX_HAS_GHOST
static bool is_row_ghosting(uint8_t row){ static bool has_ghost_in_row(uint8_t row)
matrix_row_t state = matrix_get_row(row); {
/* no ghosting happens when only one key in the row is pressed */ matrix_row_t matrix_row = matrix_get_row(row);
if (!(state - 1 & state)) return false; // No ghost exists when less than 2 keys are down on the row
/* ghosting occurs when two keys in the same column are pressed */ if (((matrix_row - 1) & matrix_row) == 0)
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { return false;
if (r != row && matrix_get_row(r) & state) return true;
// Ghost occurs when the row shares column line with other row
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
if (i != row && (matrix_get_row(i) & matrix_row))
return true;
} }
return false; return false;
} }
#endif #endif
__attribute__ ((weak)) __attribute__ ((weak))
@ -100,72 +103,86 @@ void keyboard_init(void) {
#endif #endif
} }
/* does routine keyboard jobs */ /*
void keyboard_task(void) { * Do keyboard routine jobs: scan mantrix, light LEDs, ...
static uint8_t led_status; * This is repeatedly called as fast as possible.
*/
void keyboard_task(void)
{
static matrix_row_t matrix_prev[MATRIX_ROWS];
#ifdef MATRIX_HAS_GHOST
static matrix_row_t matrix_ghost[MATRIX_ROWS];
#endif
static uint8_t led_status = 0;
matrix_row_t matrix_row = 0;
matrix_row_t matrix_change = 0;
matrix_scan(); matrix_scan();
for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { for (uint8_t r = 0; r < MATRIX_ROWS; r++) {
static matrix_row_t previous_matrix[MATRIX_ROWS]; matrix_row = matrix_get_row(r);
matrix_row_t state = matrix_get_row(r); matrix_change = matrix_row ^ matrix_prev[r];
matrix_row_t changes = state ^ previous_matrix[r]; if (matrix_change) {
if (changes) {
#ifdef MATRIX_HAS_GHOST #ifdef MATRIX_HAS_GHOST
static matrix_row_t deghosting_matrix[MATRIX_ROWS]; if (has_ghost_in_row(r)) {
if (is_row_ghosting(r)) { /* Keep track of whether ghosted status has changed for
/* debugs the deghosting mechanism */ * debugging. But don't update matrix_prev until un-ghosted, or
/* doesn't update previous_matrix until the ghosting has stopped * the last key would be lost.
* in order to prevent the last key from being lost
*/ */
if (debug_matrix && deghosting_matrix[r] != state) { if (debug_matrix && matrix_ghost[r] != matrix_row) {
matrix_print(); matrix_print();
} }
deghosting_matrix[r] = state; matrix_ghost[r] = matrix_row;
continue; continue;
} }
deghosting_matrix[r] = state; matrix_ghost[r] = matrix_row;
#endif #endif
if (debug_matrix) matrix_print(); if (debug_matrix) matrix_print();
for (int8_t c = MATRIX_COLS - 1; c >= 0; --c) { for (uint8_t c = 0; c < MATRIX_COLS; c++) {
matrix_row_t mask = (matrix_row_t)1 << c; if (matrix_change & ((matrix_row_t)1<<c)) {
if (changes & mask) { action_exec((keyevent_t){
keyevent_t event; .key = (keypos_t){ .row = r, .col = c },
event.key = (keypos_t){ .row = r, .col = c }; .pressed = (matrix_row & ((matrix_row_t)1<<c)),
event.pressed = state & mask; .time = (timer_read() | 1) /* time should not be 0 */
/* the time should not be 0 */ });
event.time = timer_read() | 1; // record a processed key
action_exec(event); matrix_prev[r] ^= ((matrix_row_t)1<<c);
/* records the processed key event */ // process a key per task call
previous_matrix[r] ^= mask; goto MATRIX_LOOP_END;
/* processes one key event per call */
goto event_processed;
} }
} }
} }
} }
/* sends tick events when the keyboard is idle */ // call with pseudo tick event when no real key event.
action_exec(TICK); action_exec(TICK);
event_processed:
MATRIX_LOOP_END:
#ifdef MOUSEKEY_ENABLE #ifdef MOUSEKEY_ENABLE
/* repeats and accelerates the mouse keys */ // mousekey repeat & acceleration
mousekey_task(); mousekey_task();
#endif #endif
#ifdef PS2_MOUSE_ENABLE #ifdef PS2_MOUSE_ENABLE
ps2_mouse_task(); ps2_mouse_task();
#endif #endif
#ifdef SERIAL_MOUSE_ENABLE #ifdef SERIAL_MOUSE_ENABLE
serial_mouse_task(); serial_mouse_task();
#endif #endif
#ifdef ADB_MOUSE_ENABLE #ifdef ADB_MOUSE_ENABLE
adb_mouse_task(); adb_mouse_task();
#endif #endif
/* updates the LEDs */
// update LED
if (led_status != host_keyboard_leds()) { if (led_status != host_keyboard_leds()) {
led_status = host_keyboard_leds(); led_status = host_keyboard_leds();
keyboard_set_leds(led_status); keyboard_set_leds(led_status);
} }
} }
void keyboard_set_leds(uint8_t leds) { void keyboard_set_leds(uint8_t leds)
if (debug_keyboard) dprintf("Keyboard LEDs state: %x\n", leds); {
if (debug_keyboard) { debug("keyboard_set_led: "); debug_hex8(leds); debug("\n"); }
led_set(leds); led_set(leds);
} }

@ -20,59 +20,48 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#if MATRIX_COLS <= 8
typedef uint8_t matrix_row_t; #if (MATRIX_COLS <= 8)
#elif MATRIX_COLS <= 16 typedef uint8_t matrix_row_t;
typedef uint16_t matrix_row_t; #elif (MATRIX_COLS <= 16)
#elif MATRIX_COLS <= 32 typedef uint16_t matrix_row_t;
typedef uint32_t matrix_row_t; #elif (MATRIX_COLS <= 32)
typedef uint32_t matrix_row_t;
#else #else
# error "There are too many columns." #error "MATRIX_COLS: invalid value"
#endif #endif
#if DIODE_DIRECTION == ROW2COL #define MATRIX_IS_ON(row, col) (matrix_get_row(row) && (1<<col))
# if MATRIX_ROWS <= 8
typedef uint8_t matrix_col_t;
# elif MATRIX_ROWS <= 16
typedef uint16_t matrix_col_t;
# elif MATRIX_ROWS <= 32
typedef uint32_t matrix_col_t;
# else
# error "There are too many rows."
# endif
#endif
typedef struct {
uint8_t input_addr:4;
uint8_t bit:4;
} io_pin_t;
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
/* counts the number of rows in the matrix */
/* number of matrix rows */
uint8_t matrix_rows(void); uint8_t matrix_rows(void);
/* counts the number of columns in the matrix */ /* number of matrix columns */
uint8_t matrix_cols(void); uint8_t matrix_cols(void);
/* sets up the matrix before matrix_init */ /* should be called at early stage of startup before matrix_init.(optional) */
void matrix_setup(void); void matrix_setup(void);
/* intializes the matrix */ /* intialize matrix for scaning. */
void matrix_init(void); void matrix_init(void);
/* scans the entire matrix */ /* scan all key states on matrix */
uint8_t matrix_scan(void); uint8_t matrix_scan(void);
/* checks if the matrix has been modified */ /* whether modified from previous scan. used after matrix_scan. */
bool matrix_is_modified(void) __attribute__ ((deprecated)); bool matrix_is_modified(void) __attribute__ ((deprecated));
/* checks if a key is pressed */ /* whether a swtich is on */
bool matrix_is_on(uint8_t row, uint8_t col); bool matrix_is_on(uint8_t row, uint8_t col);
/* inspects the state of a row in the matrix */ /* matrix state on row */
matrix_row_t matrix_get_row(uint8_t row); matrix_row_t matrix_get_row(uint8_t row);
/* prints the matrix for debugging */ /* print matrix for debug */
void matrix_print(void); void matrix_print(void);
/* counts the total number of keys pressed */
uint8_t matrix_key_count(void);
/* controls power to the matrix */ /* power control */
void matrix_power_up(void); void matrix_power_up(void);
void matrix_power_down(void); void matrix_power_down(void);
/* executes code for Quantum */ /* executes code for Quantum */
void matrix_init_quantum(void); void matrix_init_quantum(void);
void matrix_scan_quantum(void); void matrix_scan_quantum(void);

Loading…
Cancel
Save