Fixing Debounce - WIP

example_keyboards
IBNobody 8 years ago
parent a0fdb6b81a
commit 508eddf8ba

@ -31,7 +31,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define BACKLIGHT_LEVELS 3 #define BACKLIGHT_LEVELS 3
/* Debounce reduces chatter (unintended double-presses) - set 0 if debouncing is not needed */ /* Debounce reduces chatter (unintended double-presses) - set 0 if debouncing is not needed */
#define DEBOUNCING_DELAY 5 #define DEBOUNCING_DELAY 0
#define MATRIX_MASKED #define MATRIX_MASKED

@ -26,6 +26,33 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "util.h" #include "util.h"
#include "matrix.h" #include "matrix.h"
#if (MATRIX_COLS <= 8)
# define print_matrix_header() print("\nr/c 01234567\n")
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
# define matrix_bitpop(i) bitpop(matrix[i])
# define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
# define matrix_bitpop(i) bitpop16(matrix[i])
# define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
# define matrix_bitpop(i) bitpop32(matrix[i])
# define ROW_SHIFTER ((uint32_t)1)
#endif
#if (MATRIX_ROWS <= 8)
# define COL_SHIFTER ((uint8_t)1)
#elif (MATRIX_ROWS <= 16)
# define COL_SHIFTER ((uint16_t)1)
#elif (MATRIX_ROWS <= 32)
# define COL_SHIFTER ((uint32_t)1)
#endif
#ifdef MATRIX_MASKED #ifdef MATRIX_MASKED
extern const matrix_row_t matrix_mask[]; extern const matrix_row_t matrix_mask[];
#endif #endif
@ -42,23 +69,27 @@ static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
/* matrix state(1:on, 0:off) */ /* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
#if DIODE_DIRECTION == ROW2COL #if DIODE_DIRECTION == COL2ROW
static matrix_row_t matrix_reversed[MATRIX_COLS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS];
static matrix_row_t matrix_reversed_debouncing[MATRIX_COLS]; #else // ROW2COL
#endif static matrix_col_t matrix_transposed[MATRIX_COLS];
static matrix_col_t matrix_transposed_debouncing[MATRIX_COLS];
#if MATRIX_COLS > 16
#define SHIFTER 1UL
#else
#define SHIFTER 1
#endif #endif
static matrix_row_t read_cols(void); #if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void); static void init_cols(void);
static matrix_row_t read_cols(void);
static void unselect_rows(void); static void unselect_rows(void);
static void select_row(uint8_t row); static void select_row(uint8_t row);
static void unselect_row(uint8_t row);
#else // ROW2COL
static void init_rows(void);
static matrix_col_t read_rows(void);
static void unselect_cols(void);
static void unselect_col(uint8_t col);
static void select_col(uint8_t col);
#endif
__attribute__ ((weak)) __attribute__ ((weak))
void matrix_init_quantum(void) { void matrix_init_quantum(void) {
@ -99,7 +130,7 @@ uint8_t matrix_cols(void) {
} }
// void matrix_power_up(void) { // void matrix_power_up(void) {
// #if DIODE_DIRECTION == COL2ROW // #if (DIODE_DIRECTION == COL2ROW)
// for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) { // for (int8_t r = MATRIX_ROWS - 1; r >= 0; --r) {
// /* DDRxn */ // /* DDRxn */
// _SFR_IO8((row_pins[r] >> 4) + 1) |= _BV(row_pins[r] & 0xF); // _SFR_IO8((row_pins[r] >> 4) + 1) |= _BV(row_pins[r] & 0xF);
@ -123,13 +154,15 @@ uint8_t matrix_cols(void) {
// } // }
void matrix_init(void) { void matrix_init(void) {
// To use PORTF disable JTAG with writing JTD bit twice within four cycles. // To use PORTF disable JTAG with writing JTD bit twice within four cycles.
#ifdef __AVR_ATmega32U4__ #if (defined(__AVR_AT90USB1286__) || defined(__AVR_AT90USB1287__) || defined(__AVR_ATmega32U4__))
MCUCR |= _BV(JTD); MCUCR |= _BV(JTD);
MCUCR |= _BV(JTD); MCUCR |= _BV(JTD);
#endif #endif
// initialize row and col // initialize row and col
#if (DIODE_DIRECTION == COL2ROW)
unselect_rows(); unselect_rows();
init_cols(); init_cols();
@ -139,25 +172,43 @@ void matrix_init(void) {
matrix_debouncing[i] = 0; matrix_debouncing[i] = 0;
} }
#else // ROW2COL
unselect_cols();
init_rows();
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
}
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_COLS; i++) {
matrix_transposed_debouncing[i] = 0;
}
#endif
matrix_init_quantum(); matrix_init_quantum();
} }
uint8_t matrix_scan(void) uint8_t matrix_scan(void)
{ {
#if DIODE_DIRECTION == COL2ROW #if (DIODE_DIRECTION == COL2ROW)
// Set row, read cols
for (uint8_t i = 0; i < MATRIX_ROWS; i++) { for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
select_row(i); select_row(i);
wait_us(30); // without this wait read unstable value. wait_us(30); // without this wait read unstable value.
matrix_row_t cols = read_cols(); matrix_row_t current_row = read_cols();
if (matrix_debouncing[i] != cols) { if (matrix_debouncing[i] != current_row) {
matrix_debouncing[i] = cols; matrix_debouncing[i] = current_row;
if (debouncing) { if (debouncing) {
debug("bounce!: "); debug_hex(debouncing); debug("\n"); debug("bounce!: "); debug_hex(debouncing); debug("\n");
} }
debouncing = DEBOUNCING_DELAY; debouncing = DEBOUNCING_DELAY;
} }
unselect_rows(); unselect_row(i);
} }
if (debouncing) { if (debouncing) {
@ -169,19 +220,23 @@ uint8_t matrix_scan(void)
} }
} }
} }
#else
#else // ROW2COL
// Set col, read rows
for (uint8_t i = 0; i < MATRIX_COLS; i++) { for (uint8_t i = 0; i < MATRIX_COLS; i++) {
select_row(i); select_col(i);
wait_us(30); // without this wait read unstable value. wait_us(30); // without this wait read unstable value.
matrix_row_t rows = read_cols(); matrix_col_t current_col = read_rows();
if (matrix_reversed_debouncing[i] != rows) { if (matrix_transposed_debouncing[i] != current_col) {
matrix_reversed_debouncing[i] = rows; matrix_transposed_debouncing[i] = current_col;
if (debouncing) { if (debouncing) {
debug("bounce!: "); debug_hex(debouncing); debug("\n"); debug("bounce!: "); debug_hex(debouncing); debug("\n");
} }
debouncing = DEBOUNCING_DELAY; debouncing = DEBOUNCING_DELAY;
} }
unselect_rows(); unselect_col(i);
} }
if (debouncing) { if (debouncing) {
@ -189,17 +244,20 @@ uint8_t matrix_scan(void)
wait_ms(1); wait_ms(1);
} else { } else {
for (uint8_t i = 0; i < MATRIX_COLS; i++) { for (uint8_t i = 0; i < MATRIX_COLS; i++) {
matrix_reversed[i] = matrix_reversed_debouncing[i]; matrix_transposed[i] = matrix_transposed_debouncing[i];
} }
} }
} }
// Untranspose matrix
for (uint8_t y = 0; y < MATRIX_ROWS; y++) { for (uint8_t y = 0; y < MATRIX_ROWS; y++) {
matrix_row_t row = 0; matrix_row_t row = 0;
for (uint8_t x = 0; x < MATRIX_COLS; x++) { for (uint8_t x = 0; x < MATRIX_COLS; x++) {
row |= ((matrix_reversed[x] & (1<<y)) >> y) << x; row |= ((matrix_transposed[x] & (1<<y)) >> y) << x;
} }
matrix[y] = row; matrix[y] = row;
} }
#endif #endif
matrix_scan_quantum(); matrix_scan_quantum();
@ -233,23 +291,11 @@ matrix_row_t matrix_get_row(uint8_t row)
void matrix_print(void) void matrix_print(void)
{ {
#if (MATRIX_COLS <= 8) print_matrix_header();
print("\nr/c 01234567\n");
#elif (MATRIX_COLS <= 16)
print("\nr/c 0123456789ABCDEF\n");
#elif (MATRIX_COLS <= 32)
print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n");
#endif
for (uint8_t row = 0; row < MATRIX_ROWS; row++) { for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": "); phex(row); print(": ");
#if (MATRIX_COLS <= 8) print_matrix_row(row);
print_bin_reverse8(matrix_get_row(row));
#elif (MATRIX_COLS <= 16)
print_bin_reverse16(matrix_get_row(row));
#elif (MATRIX_COLS <= 32)
print_bin_reverse32(matrix_get_row(row));
#endif
print("\n"); print("\n");
} }
} }
@ -258,28 +304,21 @@ uint8_t matrix_key_count(void)
{ {
uint8_t count = 0; uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) { for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
#if (MATRIX_COLS <= 8) count += matrix_bitpop(i);
count += bitpop(matrix[i]);
#elif (MATRIX_COLS <= 16)
count += bitpop16(matrix[i]);
#elif (MATRIX_COLS <= 32)
count += bitpop32(matrix[i]);
#endif
} }
return count; return count;
} }
#if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void) static void init_cols(void)
{ {
#if DIODE_DIRECTION == COL2ROW for(uint8_t x = 0; x < MATRIX_COLS; x++) {
for(int x = 0; x < MATRIX_COLS; x++) { uint8_t pin = col_pins[x];
int pin = col_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
#else _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
for(int x = 0; x < MATRIX_ROWS; x++) {
int pin = row_pins[x];
#endif
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF);
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF);
} }
} }
@ -287,40 +326,81 @@ static matrix_row_t read_cols(void)
{ {
matrix_row_t result = 0; matrix_row_t result = 0;
#if DIODE_DIRECTION == COL2ROW for(uint8_t x = 0; x < MATRIX_COLS; x++) {
for(int x = 0; x < MATRIX_COLS; x++) { uint8_t pin = col_pins[x];
int pin = col_pins[x]; result |= (_SFR_IO8(pin >> 4) & _BV(pin & 0xF)) ? 0 : (ROW_SHIFTER << x);
#else
for(int x = 0; x < MATRIX_ROWS; x++) {
int pin = row_pins[x];
#endif
result |= (_SFR_IO8(pin >> 4) & _BV(pin & 0xF)) ? 0 : (SHIFTER << x);
} }
return result; return result;
} }
static void select_row(uint8_t row)
{
uint8_t pin = row_pins[row];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
static void unselect_row(uint8_t row)
{
uint8_t pin = row_pins[row];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
static void unselect_rows(void) static void unselect_rows(void)
{ {
#if DIODE_DIRECTION == COL2ROW for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
for(int x = 0; x < MATRIX_ROWS; x++) { uint8_t pin = row_pins[x];
int pin = row_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
#else _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
for(int x = 0; x < MATRIX_COLS; x++) {
int pin = col_pins[x];
#endif
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF);
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF);
} }
} }
static void select_row(uint8_t row) #else // ROW2COL
static void init_rows(void)
{ {
for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
uint8_t pin = row_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
#if DIODE_DIRECTION == COL2ROW static matrix_col_t read_rows(void)
int pin = row_pins[row]; {
#else matrix_col_t result = 0;
int pin = col_pins[row];
#endif for(uint8_t x = 0; x < MATRIX_ROWS; x++) {
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); uint8_t pin = row_pins[x];
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); result |= (_SFR_IO8(pin >> 4) & _BV(pin & 0xF)) ? 0 : (COL_SHIFTER << x);
}
return result;
} }
static void select_col(uint8_t col)
{
uint8_t pin = col_pins[col];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
static void unselect_col(uint8_t col)
{
uint8_t pin = col_pins[col];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
static void unselect_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
uint8_t pin = col_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
#endif

@ -31,6 +31,16 @@ typedef uint32_t matrix_row_t;
#error "MATRIX_COLS: invalid value" #error "MATRIX_COLS: invalid value"
#endif #endif
#if (MATRIX_ROWS <= 8)
typedef uint8_t matrix_col_t;
#elif (MATRIX_ROWS <= 16)
typedef uint16_t matrix_col_t;
#elif (MATRIX_ROWS <= 32)
typedef uint32_t matrix_col_t;
#else
#error "MATRIX_COLS: invalid value"
#endif
#define MATRIX_IS_ON(row, col) (matrix_get_row(row) && (1<<col)) #define MATRIX_IS_ON(row, col) (matrix_get_row(row) && (1<<col))

Loading…
Cancel
Save