more flexible led processing functions, all and on/off/toggle

functioning
example_keyboards
jpetermans 8 years ago
parent 15635817b5
commit 1b1adf35bb

@ -210,14 +210,14 @@ void action_function(keyrecord_t *record, uint8_t id, uint8_t opt) {
case ACTION_LEDS_NAV: case ACTION_LEDS_NAV:
if(record->event.pressed) { if(record->event.pressed) {
// signal the LED controller thread // signal the LED controller thread
msg=(TOGGLE_LAYER_LEDS << 8) | 3; msg=(OFF_LED << 8) | 12;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE); chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
} }
break; break;
case ACTION_LEDS_NUMPAD: case ACTION_LEDS_NUMPAD:
if(record->event.pressed) { if(record->event.pressed) {
// signal the LED controller thread // signal the LED controller thread
msg=(TOGGLE_LAYER_LEDS << 8) | 4; msg=(ON_LED << 8) | 12;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE); chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
} }
break; break;

@ -16,7 +16,6 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
#include "hal.h" #include "hal.h"
#include "print.h"
#include "led.h" #include "led.h"
@ -28,16 +27,7 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
void led_set(uint8_t usb_led) { void led_set(uint8_t usb_led) {
msg_t msg; msg_t msg;
/*
// PTA5: LED (1:on/0:off)
GPIOA->PDDR |= (1<<1);
PORTA->PCR[5] |= PORTx_PCRn_DSE | PORTx_PCRn_MUX(1);
if (usb_led & (1<<USB_LED_CAPS_LOCK)) {
GPIOA->PSOR |= (1<<5);
} else {
GPIOA->PCOR |= (1<<5);
}
*/
if (usb_led & (1<<USB_LED_NUM_LOCK)) { if (usb_led & (1<<USB_LED_NUM_LOCK)) {
// signal the LED control thread // signal the LED control thread
chSysUnconditionalLock(); chSysUnconditionalLock();
@ -46,7 +36,6 @@ void led_set(uint8_t usb_led) {
chSysUnconditionalUnlock(); chSysUnconditionalUnlock();
} else { } else {
// signal the LED control thread // signal the LED control thread
xprintf("NUMLOCK OFF\n");
chSysUnconditionalLock(); chSysUnconditionalLock();
msg=(TOGGLE_NUM_LOCK << 8) | 0; msg=(TOGGLE_NUM_LOCK << 8) | 0;
chMBPostI(&led_mailbox, msg); chMBPostI(&led_mailbox, msg);
@ -54,7 +43,6 @@ void led_set(uint8_t usb_led) {
} }
if (usb_led & (1<<USB_LED_CAPS_LOCK)) { if (usb_led & (1<<USB_LED_CAPS_LOCK)) {
// signal the LED control thread // signal the LED control thread
xprintf("CAPSLOCK ON\n");
chSysUnconditionalLock(); chSysUnconditionalLock();
msg=(TOGGLE_CAPS_LOCK << 8) | 1; msg=(TOGGLE_CAPS_LOCK << 8) | 1;
chMBPostI(&led_mailbox, msg); chMBPostI(&led_mailbox, msg);

@ -91,7 +91,7 @@ uint8_t full_page[0xB4+1] = {0};
// See page comment above, control alternates CA matrix/CB matrix // See page comment above, control alternates CA matrix/CB matrix
// IC60 pcb uses only CA matrix. // IC60 pcb uses only CA matrix.
// Each byte is a control pin for 8 leds ordered 8-1 // Each byte is a control pin for 8 leds ordered 8-1
const uint8_t is31_ic60_leds_mask[0x12] = { const uint8_t all_on_leds_mask[0x12] = {
0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF,
0x00, 0xFF, 0x00, 0xFF, 0x00, 0x7F, 0x00, 0x00, 0x00 0x00, 0xFF, 0x00, 0xFF, 0x00, 0x7F, 0x00, 0x00, 0x00
}; };
@ -171,10 +171,11 @@ static THD_FUNCTION(LEDthread, arg) {
chRegSetThreadName("LEDthread"); chRegSetThreadName("LEDthread");
uint8_t i, page; uint8_t i, page;
uint8_t control_register_word[2] = {0};
uint8_t led_control_reg[0x13] = {0};//led control register start address + 0x12 bytes
//persistent status variables //persistent status variables
uint8_t backlight_status, lock_status, led_step_status, layer_status; uint8_t backlight_status, led_step_status, layer_status;
uint8_t led_control_reg[0x13] = {0};//led control register start address + 0x12 bytes
//mailbox variables //mailbox variables
uint8_t temp, msg_type, msg_led; uint8_t temp, msg_type, msg_led;
@ -187,7 +188,6 @@ static THD_FUNCTION(LEDthread, arg) {
// initialize persistent variables // initialize persistent variables
backlight_status = 0; backlight_status = 0;
lock_status = 0;//TODO: does keyboard remember locks?
led_step_status = 4; //full brightness led_step_status = 4; //full brightness
layer_status = 0; layer_status = 0;
@ -207,34 +207,63 @@ layer_status = 0;
//TODO: lighting key led on keypress //TODO: lighting key led on keypress
break; break;
//turn on/off/toggle single led, msg_led = row/col of led
case OFF_LED:
xprintf("OFF_LED\n");
set_led_bit(7, control_register_word, msg_led, 0);
is31_write_data (7, control_register_word, 0x02);
if (layer_status > 0) {//check current led page to prevent double blink
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
}
layer_status = 7;
break;
case ON_LED:
xprintf("ON_LED\n");
set_led_bit(7, control_register_word, msg_led, 1);
is31_write_data (7, control_register_word, 0x02);
if (layer_status > 7) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
}
layer_status = 7;
break;
case TOGGLE_LED: case TOGGLE_LED:
//TODO: toggle existing indicator off, or let user do this, but write frame 7 for every led change
//turn on single led, msg_led = row/col of led
xprintf("TOGGLE_LED\n"); xprintf("TOGGLE_LED\n");
set_led_bit(led_control_reg, msg_led, 1); set_led_bit(7, control_register_word, msg_led, 2);
is31_write_data (7, led_control_reg, 0x12+1); is31_write_data (7, control_register_word, 0x02);
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7); if (layer_status > 7) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 7);
}
layer_status = 7; layer_status = 7;
break; break;
case TOGGLE_ALL: case TOGGLE_ALL:
xprintf("TOGGLE_ALL\n"); xprintf("TOGGLE_ALL\n");
//msg_led = unused, TODO: consider using msg_led to toggle layer display //msg_led = unused, TODO: consider using msg_led to toggle layer display
is31_read_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, &temp);
//if LED_ALL is on then toggle off, any other layer, turn on LED_ALL is31_read_register(0, 0x00, &temp);//if first byte is on, then toggle frame 1 off
if(temp == 1) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 0); led_control_reg[0] = 0;
if (temp==0) {
xprintf("all leds on");
__builtin_memcpy(led_control_reg+1, all_on_leds_mask, 0x12);
} else { } else {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 1); xprintf("all leds off");
__builtin_memset(led_control_reg+1, 0, 0x12);
} }
is31_read_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, &temp);
is31_write_data(0, led_control_reg, 0x13);
if (layer_status > 0) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, 0);
}
layer_status=0;
//TODO: Double blink when all on
break; break;
case TOGGLE_BACKLIGHT: case TOGGLE_BACKLIGHT:
//msg_led = unused //msg_led = unused
//TODO: consider Frame 0 as on/off layer and toggle led control register here //TODO: consider Frame 0 as on/off layer and toggle led control register here
//TODO: need to test tracking of active layer with layer_state from qmk
xprintf("TOGGLE_BACKLIGHT\n"); xprintf("TOGGLE_BACKLIGHT\n");
backlight_status ^= 1; backlight_status ^= 1;
is31_read_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, &temp); is31_read_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, &temp);
@ -274,6 +303,7 @@ layer_status = 0;
case MODE_BREATH: case MODE_BREATH:
break; break;
case STEP_BRIGHTNESS: case STEP_BRIGHTNESS:
//TEST: Step brightness code
//pwm_levels[] bounds checking, loop through array //pwm_levels[] bounds checking, loop through array
//TODO: find a cleaner way to walk through this logic //TODO: find a cleaner way to walk through this logic
if (msg_led == 0 && led_step_status == 0) { if (msg_led == 0 && led_step_status == 0) {
@ -336,30 +366,42 @@ layer_status = 0;
} }
/* ======================== /* ==============================
* led bit processing * led processing functions
* ======================== */ * ============================== */
void set_led_bit (uint8_t *led_control_reg, uint8_t msg_led, uint8_t toggle_on) {
uint8_t row_byte, column_bit; void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint8_t action) {
//msg_led tens column is pin# //returns 2 bytes led control register address and byte mask to write
//ones column is bit position in 8-bit mask
//first byte is register address 0x00 uint8_t control_reg_addr, column_bit, column_byte, temp;
row_byte = ((msg_led / 10) % 10 - 1 ) * 2 + 1;// A register is every other 8 bits //first byte is led control register address 0x00
column_bit = 1<<(msg_led % 10 - 1); //msg_led tens column is pin#, ones column is bit position in 8-bit mask
control_reg_addr = ((led_addr / 10) % 10 - 1 ) * 0x02;// A-register is every other byte
if (toggle_on) { column_bit = 1<<(led_addr % 10 - 1);
led_control_reg[row_byte] |= 1<<(column_bit);
} else { is31_read_register(page,control_reg_addr,&temp);//need to maintain status of leds in this row (1 byte)
led_control_reg[row_byte] &= ~1<<(column_bit); column_byte = temp;
switch(action) {
case 0:
column_byte &= ~1<<(column_bit);
break;
case 1:
column_byte |= 1<<(column_bit);
break;
case 2:
column_byte ^= 1<<(column_bit);
break;
} }
led_control_reg[0] = control_reg_addr;
led_control_reg[1] = column_byte;
} }
//TODO: not toggling off correctly void set_lock_leds(uint8_t lock_type, uint8_t led_on) {
//TODO: confirm led_off page still has FF pwm for all uint8_t page, led_addr;
void set_lock_leds(uint8_t lock_type, uint8_t lock_status) { uint8_t led_control_write[2] = {0};
uint8_t page; //TODO: consolidate control register to top level array vs. three scattered around
uint8_t led_addr, temp;
uint8_t control_reg[2] = {0};//register address and led bits
switch(lock_type) { switch(lock_type) {
case USB_LED_NUM_LOCK: case USB_LED_NUM_LOCK:
@ -384,44 +426,30 @@ void set_lock_leds(uint8_t lock_type, uint8_t lock_status) {
break; break;
#endif #endif
} }
xprintf("led_addr: %X\n", led_addr);
chThdSleepMilliseconds(30);
control_reg[0] = ((led_addr / 10) % 10 - 1 ) * 0x02;// A-register is every other byte
xprintf("control_reg: %X\n", control_reg[0]);
chThdSleepMilliseconds(30);
for(page=BACKLIGHT_OFF_LOCK_LED_OFF; page<8; page++) { //set in led_controller.h for(page=BACKLIGHT_OFF_LOCK_LED_OFF; page<8; page++) { //set in led_controller.h
is31_read_register(page,control_reg[0],&temp);//need to maintain status of leds in this row (1 byte) //TODO: check if frame2 (or frame1, first byte all on), and ignore if true
chThdSleepMilliseconds(30); //also if BACKLIGHT_OFF_LOCK_LED_OFF set
xprintf("1lock byte: %X\n", temp); set_led_bit(page,led_control_write,led_addr,led_on);
chThdSleepMilliseconds(30); is31_write_data (page, led_control_write, 0x02);
if (lock_status) {
temp |= 1<<(led_addr % 10 - 1);
} else {
temp &= ~1<<(led_addr % 10 - 1);
}
chThdSleepMilliseconds(30);
xprintf("2lock byte: %X\n", temp);
chThdSleepMilliseconds(30);
control_reg[1] = temp;
is31_write_data (page, control_reg, 0x02);
} }
} }
void write_led_page (uint8_t page, const uint8_t *led_array, uint8_t led_count) { void write_led_page (uint8_t page, const uint8_t *led_array, uint8_t led_count) {
uint8_t i; uint8_t i;
uint8_t row, col; uint8_t row, col;
uint8_t temp_control_reg[0x13] = {0};//led control register start address + 0x12 bytes uint8_t led_control_register[0x13] = {0};//led control register start address + 0x12 bytes
for(i=0;i<led_count;i++){ for(i=0;i<led_count;i++){
row = ((led_array[i] / 10) % 10 - 1 ) * 2 + 1;//includes 1 byte shift for led register 0x00 address row = ((led_array[i] / 10) % 10 - 1 ) * 2 + 1;//includes 1 byte shift for led register 0x00 address
col = led_array[i] % 10 - 1; col = led_array[i] % 10 - 1;
temp_control_reg[row] |= 1<<(col); led_control_register[row] |= 1<<(col);
} }
is31_write_data(page, temp_control_reg, 0x13); is31_write_data(page, led_control_register, 0x13);
} }
/* ===================== /* =====================
* hook into user keymap * hook into user keymap
* ===================== */ * ===================== */
@ -458,8 +486,9 @@ void led_controller_init(void) {
} }
//set all led bits on for Frame 2 LEDS_ALL //set all led bits on for Frame 2 LEDS_ALL
//TODO: set all off in init
full_page[0] = 0; full_page[0] = 0;
__builtin_memcpy(full_page+1, is31_ic60_leds_mask, 0x12); __builtin_memset(full_page+1, 0, 0x12);
is31_write_data(1, full_page, 1+0x12); is31_write_data(1, full_page, 1+0x12);
/* enable breathing when the displayed page changes */ /* enable breathing when the displayed page changes */

@ -32,7 +32,7 @@ msg_t is31_read_register(uint8_t page, uint8_t reg, uint8_t *result);
void led_controller_init(void); void led_controller_init(void);
#define CAPS_LOCK_LED_ADDRESS 46 #define CAPS_LOCK_LED_ADDRESS 46 //pin matrix location
#define NUM_LOCK_LED_ADDRESS 85 #define NUM_LOCK_LED_ADDRESS 85
#define BACKLIGHT_OFF_LOCK_LED_OFF 0 //set to 0 to show lock leds even if backlight off #define BACKLIGHT_OFF_LOCK_LED_OFF 0 //set to 0 to show lock leds even if backlight off
@ -87,18 +87,20 @@ void led_controller_init(void);
#define IS31_TIMEOUT 10000 // needs to be long enough to write a whole page #define IS31_TIMEOUT 10000 // needs to be long enough to write a whole page
/* ======================================== /* ========================================
* LED Thread related definitions/functions * LED Thread related functions/definitions
* ========================================*/ * ========================================*/
extern mailbox_t led_mailbox; extern mailbox_t led_mailbox;
void set_led_bit (uint8_t *led_control_reg, uint8_t led_msg, uint8_t toggle_on); void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint8_t action);
void set_lock_leds (uint8_t lock_type, uint8_t lock_status); void set_lock_leds (uint8_t lock_type, uint8_t led_on);
void write_led_page (uint8_t page, const uint8_t *led_array, uint8_t led_count); void write_led_page (uint8_t page, const uint8_t *led_array, uint8_t led_count);
// constants for signaling the LED controller thread // constants for signaling the LED controller thread
enum led_msg_t { enum led_msg_t {
KEY_LIGHT, KEY_LIGHT,
OFF_LED,
ON_LED,
TOGGLE_LED, TOGGLE_LED,
TOGGLE_ALL, TOGGLE_ALL,
TOGGLE_BACKLIGHT, TOGGLE_BACKLIGHT,

Loading…
Cancel
Save