Leader key implementation (#326)

* implements leader key for planck experimental

* allows override of leader timeout

* adds ability to use the leader key in seq

* fixes leader keycode

* adds chording prototype

* fixes keycode detection

* moves music mode to quantum.c

* disables chording by default

* updates process_action functions to return bool
example_keyboards
Erez Zukerman 9 years ago committed by Jack Humbert
parent 79d26f331a
commit 1a8c0dd22d

@ -11,8 +11,9 @@ void matrix_scan_user(void) {
} }
__attribute__ ((weak)) __attribute__ ((weak))
void process_action_user(keyrecord_t *record) { bool process_action_user(keyrecord_t *record) {
// leave this function blank - it can be defined in a keymap file // leave this function blank - it can be defined in a keymap file
return true;
} }
__attribute__ ((weak)) __attribute__ ((weak))
@ -45,11 +46,11 @@ void matrix_scan_kb(void) {
matrix_scan_user(); matrix_scan_user();
} }
void process_action_kb(keyrecord_t *record) { bool process_action_kb(keyrecord_t *record) {
// put your per-action keyboard code here // put your per-action keyboard code here
// runs for every action, just before processing by the firmware // runs for every action, just before processing by the firmware
process_action_user(record); return process_action_user(record);
} }
void led_set_kb(uint8_t usb_led) { void led_set_kb(uint8_t usb_led) {

@ -29,7 +29,7 @@
void matrix_init_user(void); void matrix_init_user(void);
void matrix_scan_user(void); void matrix_scan_user(void);
void process_action_user(keyrecord_t *record); bool process_action_user(keyrecord_t *record);
void led_set_user(uint8_t usb_led); void led_set_user(uint8_t usb_led);
void backlight_init_ports(void); void backlight_init_ports(void);

@ -12,8 +12,9 @@ void matrix_scan_user(void) {
} }
__attribute__ ((weak)) __attribute__ ((weak))
void process_action_user(keyrecord_t *record) { bool process_action_user(keyrecord_t *record) {
// leave this function blank - it can be defined in a keymap file // leave this function blank - it can be defined in a keymap file
return true;
} }
__attribute__ ((weak)) __attribute__ ((weak))
@ -35,11 +36,11 @@ void matrix_scan_kb(void) {
matrix_scan_user(); matrix_scan_user();
} }
void process_action_kb(keyrecord_t *record) { bool process_action_kb(keyrecord_t *record) {
// put your per-action keyboard code here // put your per-action keyboard code here
// runs for every action, just before processing by the firmware // runs for every action, just before processing by the firmware
process_action_user(record); return process_action_user(record);
} }
void led_set_kb(uint8_t usb_led) { void led_set_kb(uint8_t usb_led) {

@ -75,7 +75,7 @@ inline void gh60_wasd_leds_off(void) { DDRF &= ~(1<<7); PORTF &= ~(1<<7); }
void matrix_init_user(void); void matrix_init_user(void);
void matrix_scan_user(void); void matrix_scan_user(void);
void process_action_user(keyrecord_t *record); bool process_action_user(keyrecord_t *record);
void led_set_user(uint8_t usb_led); void led_set_user(uint8_t usb_led);
#endif #endif

@ -6,6 +6,7 @@
#ifdef AUDIO_ENABLE #ifdef AUDIO_ENABLE
#include "audio.h" #include "audio.h"
#endif #endif
#include "eeconfig.h" #include "eeconfig.h"
extern keymap_config_t keymap_config; extern keymap_config_t keymap_config;
@ -78,7 +79,7 @@ const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
{KC_TAB, KC_Q, KC_W, KC_F, KC_P, KC_G, KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSPC}, {KC_TAB, KC_Q, KC_W, KC_F, KC_P, KC_G, KC_J, KC_L, KC_U, KC_Y, KC_SCLN, KC_BSPC},
{KC_ESC, KC_A, KC_R, KC_S, KC_T, KC_D, KC_H, KC_N, KC_E, KC_I, KC_O, KC_QUOT}, {KC_ESC, KC_A, KC_R, KC_S, KC_T, KC_D, KC_H, KC_N, KC_E, KC_I, KC_O, KC_QUOT},
{KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_K, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_ENT }, {KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_K, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_ENT },
{M(M_BL), KC_LCTL, KC_LALT, KC_LGUI, LOWER, KC_SPC, KC_SPC, RAISE, KC_LEFT, KC_DOWN, KC_UP, KC_RGHT} {KC_LEAD, KC_LCTL, KC_LALT, KC_LGUI, LOWER, KC_SPC, KC_SPC, RAISE, KC_LEFT, KC_DOWN, KC_UP, KC_RGHT}
}, },
/* Dvorak /* Dvorak
@ -291,7 +292,7 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
case 8: case 8:
if (record->event.pressed) { if (record->event.pressed) {
#ifdef AUDIO_ENABLE #ifdef AUDIO_ENABLE
layer_off(_MUSIC); music_activated = false;
stop_all_notes(); stop_all_notes();
#endif #endif
} }
@ -300,7 +301,7 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt)
if (record->event.pressed) { if (record->event.pressed) {
#ifdef AUDIO_ENABLE #ifdef AUDIO_ENABLE
PLAY_NOTE_ARRAY(music_scale, false, 0); PLAY_NOTE_ARRAY(music_scale, false, 0);
layer_on(_MUSIC); music_activated = true;
#endif #endif
} }
break; break;
@ -360,24 +361,35 @@ void matrix_init_user(void) {
} }
#ifdef AUDIO_ENABLE #ifdef AUDIO_ENABLE
void play_goodbye_tone() void play_goodbye_tone(void)
{ {
PLAY_NOTE_ARRAY(goodbye, false, 0); PLAY_NOTE_ARRAY(goodbye, false, 0);
_delay_ms(150); _delay_ms(150);
} }
#endif
uint8_t starting_note = 0x0C; LEADER_EXTERNS();
int offset = 0;
void process_action_user(keyrecord_t *record) { #define LEADER_TIMEOUT 300
if (IS_LAYER_ON(_MUSIC)) { void matrix_scan_user(void) {
if (record->event.pressed) { LEADER_DICTIONARY() {
play_note(((double)220.0)*pow(2.0, -4.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)), 0xF); leading = false;
} else { leader_end();
stop_note(((double)220.0)*pow(2.0, -4.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)));
SEQ_ONE_KEY(KC_F) {
register_code(KC_S);
unregister_code(KC_S);
}
SEQ_TWO_KEYS(KC_A, KC_S) {
register_code(KC_H);
unregister_code(KC_H);
}
SEQ_THREE_KEYS(KC_A, KC_S, KC_D) {
register_code(KC_LGUI);
register_code(KC_S);
unregister_code(KC_S);
unregister_code(KC_LGUI);
} }
} }
} }
#endif

@ -7,7 +7,9 @@ __attribute__ ((weak))
void matrix_scan_user(void) {} void matrix_scan_user(void) {}
__attribute__ ((weak)) __attribute__ ((weak))
void process_action_user(keyrecord_t *record) {} bool process_action_user(keyrecord_t *record) {
return true;
}
__attribute__ ((weak)) __attribute__ ((weak))
void led_set_user(uint8_t usb_led) {} void led_set_user(uint8_t usb_led) {}
@ -32,8 +34,8 @@ void matrix_scan_kb(void) {
matrix_scan_user(); matrix_scan_user();
} }
void process_action_kb(keyrecord_t *record) { bool process_action_kb(keyrecord_t *record) {
process_action_user(record); return process_action_user(record);
} }
void led_set_kb(uint8_t usb_led) { void led_set_kb(uint8_t usb_led) {

@ -1,19 +1,7 @@
#ifndef PLANCK_H #ifndef PLANCK_H
#define PLANCK_H #define PLANCK_H
#include "matrix.h" #include "quantum.h"
#include "keymap_common.h"
#ifdef BACKLIGHT_ENABLE
#include "backlight.h"
#endif
#ifdef RGBLIGHT_ENABLE
#include "rgblight.h"
#endif
#include <stddef.h>
#include <avr/io.h>
#ifdef MIDI_ENABLE
#include <keymap_midi.h>
#endif
#define PLANCK_MIT( \ #define PLANCK_MIT( \
k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \ k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0a, k0b, \
@ -43,7 +31,7 @@
void matrix_init_user(void); void matrix_init_user(void);
void matrix_scan_user(void); void matrix_scan_user(void);
void process_action_user(keyrecord_t *record); bool process_action_user(keyrecord_t *record);
void led_set_user(uint8_t usb_led); void led_set_user(uint8_t usb_led);
void backlight_init_ports(void); void backlight_init_ports(void);

@ -11,8 +11,8 @@ void matrix_scan_user(void) {
}; };
__attribute__ ((weak)) __attribute__ ((weak))
void process_action_user(keyrecord_t *record) { bool process_action_user(keyrecord_t *record) {
return true;
}; };
void matrix_init_kb(void) { void matrix_init_kb(void) {
@ -36,8 +36,8 @@ void matrix_scan_kb(void) {
matrix_scan_user(); matrix_scan_user();
}; };
void process_action_kb(keyrecord_t *record) { bool process_action_kb(keyrecord_t *record) {
process_action_user(record); return process_action_user(record);
} }
#ifdef BACKLIGHT_ENABLE #ifdef BACKLIGHT_ENABLE

@ -47,6 +47,6 @@
void matrix_init_user(void); void matrix_init_user(void);
void matrix_scan_user(void); void matrix_scan_user(void);
void process_action_kb(keyrecord_t *record); bool process_action_kb(keyrecord_t *record);
#endif #endif

@ -251,7 +251,7 @@ static action_t keycode_to_action(uint16_t keycode)
} }
eeconfig_update_keymap(keymap_config.raw); eeconfig_update_keymap(keymap_config.raw);
break; break;
case 0x5100 ... 0x5FFF: ; case 0x5100 ... 0x56FF: ;
// Layer movement shortcuts // Layer movement shortcuts
// See .h to see constraints/usage // See .h to see constraints/usage
int type = (keycode >> 0x8) & 0xF; int type = (keycode >> 0x8) & 0xF;

@ -159,7 +159,7 @@ extern const uint16_t fn_actions[];
#define S(kc) LSFT(kc) #define S(kc) LSFT(kc)
#define F(kc) FUNC(kc) #define F(kc) FUNC(kc)
#define M(kc) kc | 0x3000 #define M(kc) (kc | 0x3000)
#define MACRODOWN(...) (record->event.pressed ? MACRO(__VA_ARGS__) : MACRO_NONE) #define MACRODOWN(...) (record->event.pressed ? MACRO(__VA_ARGS__) : MACRO_NONE)
@ -191,6 +191,8 @@ extern const uint16_t fn_actions[];
#define RESET 0x5000 #define RESET 0x5000
#define DEBUG 0x5001 #define DEBUG 0x5001
#define KC_LEAD 0x5014
// MAGIC keycodes // MAGIC keycodes
#define MAGIC_SWAP_CONTROL_CAPSLOCK 0x5002 #define MAGIC_SWAP_CONTROL_CAPSLOCK 0x5002

@ -55,12 +55,12 @@ static void unselect_rows(void);
static void select_row(uint8_t row); static void select_row(uint8_t row);
__attribute__ ((weak)) __attribute__ ((weak))
void matrix_init_kb(void) { void matrix_init_quantum(void) {
} }
__attribute__ ((weak)) __attribute__ ((weak))
void matrix_scan_kb(void) { void matrix_scan_quantum(void) {
} }
@ -93,7 +93,7 @@ void matrix_init(void)
matrix_debouncing[i] = 0; matrix_debouncing[i] = 0;
} }
matrix_init_kb(); matrix_init_quantum();
} }
@ -157,7 +157,7 @@ uint8_t matrix_scan(void)
} }
#endif #endif
matrix_scan_kb(); matrix_scan_quantum();
return 1; return 1;
} }

@ -0,0 +1,167 @@
#include "quantum.h"
__attribute__ ((weak))
void matrix_init_kb(void) {}
__attribute__ ((weak))
void matrix_scan_kb(void) {}
__attribute__ ((weak))
bool process_action_kb(keyrecord_t *record) {
return true;
}
__attribute__ ((weak))
void leader_start(void) {}
__attribute__ ((weak))
void leader_end(void) {}
#ifdef AUDIO_ENABLE
uint8_t starting_note = 0x0C;
int offset = 0;
bool music_activated = false;
#endif
// Leader key stuff
bool leading = false;
uint16_t leader_time = 0;
uint16_t leader_sequence[3] = {0, 0, 0};
uint8_t leader_sequence_size = 0;
// Chording stuff
#define CHORDING_MAX 4
bool chording = false;
uint8_t chord_keys[CHORDING_MAX] = {0};
uint8_t chord_key_count = 0;
uint8_t chord_key_down = 0;
bool keys_chord(uint8_t keys[]) {
uint8_t keys_size = sizeof(keys)/sizeof(keys[0]);
bool pass = true;
uint8_t in = 0;
for (uint8_t i = 0; i < chord_key_count; i++) {
bool found = false;
for (uint8_t j = 0; j < keys_size; j++) {
if (chord_keys[i] == (keys[j] & 0xFF)) {
in++; // detects key in chord
found = true;
break;
}
}
if (found)
continue;
if (chord_keys[i] != 0) {
pass = false; // makes sure rest are blank
}
}
return (pass && (in == keys_size));
}
bool process_action_quantum(keyrecord_t *record) {
/* This gets the keycode from the key pressed */
keypos_t key = record->event.key;
uint16_t keycode;
#if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)
uint8_t layer;
if (record->event.pressed) {
layer = layer_switch_get_layer(key);
update_source_layers_cache(key, layer);
} else {
layer = read_source_layers_cache(key);
}
keycode = keymap_key_to_keycode(layer, key);
#else
keycode = keymap_key_to_keycode(layer_switch_get_layer(key), key);
#endif
#ifdef AUDIO_ENABLE
if (music_activated) {
if (record->event.pressed) {
play_note(((double)220.0)*pow(2.0, -4.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)), 0xF);
} else {
stop_note(((double)220.0)*pow(2.0, -4.0)*pow(2.0,(starting_note + SCALE[record->event.key.col + offset])/12.0+(MATRIX_ROWS - record->event.key.row)));
}
if (keycode < 0xFF) // ignores all normal keycodes, but lets RAISE, LOWER, etc through
return false;
}
#endif
#ifndef DISABLE_LEADER
// Leader key set-up
if (record->event.pressed) {
if (!leading && keycode == KC_LEAD) {
leader_start();
leading = true;
leader_time = timer_read();
leader_sequence_size = 0;
leader_sequence[0] = 0;
leader_sequence[1] = 0;
leader_sequence[2] = 0;
return false;
}
if (leading && timer_elapsed(leader_time) < LEADER_TIMEOUT) {
leader_sequence[leader_sequence_size] = keycode;
leader_sequence_size++;
return false;
}
}
#endif
#define DISABLE_CHORDING
#ifndef DISABLE_CHORDING
if (keycode >= 0x5700 && keycode <= 0x57FF) {
if (record->event.pressed) {
if (!chording) {
chording = true;
for (uint8_t i = 0; i < CHORDING_MAX; i++)
chord_keys[i] = 0;
chord_key_count = 0;
chord_key_down = 0;
}
chord_keys[chord_key_count] = (keycode & 0xFF);
chord_key_count++;
chord_key_down++;
return false;
} else {
if (chording) {
chord_key_down--;
if (chord_key_down == 0) {
chording = false;
// Chord Dictionary
if (keys_chord((uint8_t[]){KC_ENTER, KC_SPACE})) {
register_code(KC_A);
unregister_code(KC_A);
return false;
}
for (uint8_t i = 0; i < chord_key_count; i++) {
register_code(chord_keys[i]);
unregister_code(chord_keys[i]);
return false;
}
}
}
}
}
#endif
return process_action_kb(record);
}
void matrix_init_quantum() {
matrix_init_kb();
}
void matrix_scan_quantum() {
matrix_scan_kb();
}

@ -0,0 +1,48 @@
#ifndef QUANTUM_H
#define QUANTUM_H
#include "matrix.h"
#include "keymap_common.h"
#ifdef BACKLIGHT_ENABLE
#include "backlight.h"
#endif
#ifdef RGBLIGHT_ENABLE
#include "rgblight.h"
#endif
#ifdef AUDIO_ENABLE
#include "audio.h"
#endif
#ifdef MIDI_ENABLE
#include <keymap_midi.h>
#endif
#include "action_layer.h"
#include "eeconfig.h"
#include <stddef.h>
#include <avr/io.h>
extern uint32_t default_layer_state;
#ifndef NO_ACTION_LAYER
extern uint32_t layer_state;
#endif
bool music_activated;
void matrix_init_kb(void);
void matrix_scan_kb(void);
bool process_action_kb(keyrecord_t *record);
void leader_start(void);
void leader_end(void);
#ifndef LEADER_TIMEOUT
#define LEADER_TIMEOUT 200
#endif
#define SEQ_ONE_KEY(key) if (leader_sequence[0] == (key) && leader_sequence[1] == 0 && leader_sequence[2] == 0)
#define SEQ_TWO_KEYS(key1, key2) if (leader_sequence[0] == (key1) && leader_sequence[1] == (key2) && leader_sequence[2] == 0)
#define SEQ_THREE_KEYS(key1, key2, key3) if (leader_sequence[0] == (key1) && leader_sequence[1] == (key2) && leader_sequence[2] == (key3))
#define LEADER_EXTERNS() extern bool leading; extern uint16_t leader_time; extern uint16_t leader_sequence[3]; extern uint8_t leader_sequence_size
#define LEADER_DICTIONARY() if (leading && timer_elapsed(leader_time) > LEADER_TIMEOUT)
#endif

@ -1,7 +1,8 @@
QUANTUM_DIR = quantum QUANTUM_DIR = quantum
# # project specific files # # project specific files
SRC += $(QUANTUM_DIR)/keymap_common.c \ SRC += $(QUANTUM_DIR)/quantum.c \
$(QUANTUM_DIR)/keymap_common.c \
$(QUANTUM_DIR)/led.c $(QUANTUM_DIR)/led.c
# ifdef KEYMAP_FILE # ifdef KEYMAP_FILE

@ -11,8 +11,9 @@ void matrix_scan_user(void) {
} }
__attribute__ ((weak)) __attribute__ ((weak))
void process_action_user(keyrecord_t *record) { bool process_action_user(keyrecord_t *record) {
// leave this function blank - it can be defined in a keymap file // leave this function blank - it can be defined in a keymap file
return true;
} }
__attribute__ ((weak)) __attribute__ ((weak))
@ -34,11 +35,11 @@ void matrix_scan_kb(void) {
matrix_scan_user(); matrix_scan_user();
} }
void process_action_kb(keyrecord_t *record) { bool process_action_kb(keyrecord_t *record) {
// put your per-action keyboard code here // put your per-action keyboard code here
// runs for every action, just before processing by the firmware // runs for every action, just before processing by the firmware
process_action_user(record); return process_action_user(record);
} }
void led_set_kb(uint8_t usb_led) { void led_set_kb(uint8_t usb_led) {

@ -24,7 +24,7 @@
void matrix_init_user(void); void matrix_init_user(void);
void matrix_scan_user(void); void matrix_scan_user(void);
void process_action_user(keyrecord_t *record); bool process_action_user(keyrecord_t *record);
void led_set_user(uint8_t usb_led); void led_set_user(uint8_t usb_led);
#endif #endif

@ -70,7 +70,9 @@ void process_action_nocache(keyrecord_t *record)
#endif #endif
__attribute__ ((weak)) __attribute__ ((weak))
void process_action_kb(keyrecord_t *record) {} bool process_action_quantum(keyrecord_t *record) {
return true;
}
void process_action(keyrecord_t *record) void process_action(keyrecord_t *record)
{ {
@ -89,7 +91,8 @@ void process_action(keyrecord_t *record)
} }
#endif #endif
process_action_kb(record); if (!process_action_quantum(record))
return;
action_t action = store_or_get_action(event.pressed, event.key); action_t action = store_or_get_action(event.pressed, event.key);
dprint("ACTION: "); debug_action(action); dprint("ACTION: "); debug_action(action);

@ -59,7 +59,7 @@ const macro_t *action_get_macro(keyrecord_t *record, uint8_t id, uint8_t opt);
void action_function(keyrecord_t *record, uint8_t id, uint8_t opt); void action_function(keyrecord_t *record, uint8_t id, uint8_t opt);
/* keyboard-specific key event (pre)processing */ /* keyboard-specific key event (pre)processing */
void process_action_kb(keyrecord_t *record); bool process_action_quantum(keyrecord_t *record);
/* Utilities for actions. */ /* Utilities for actions. */
#if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS) #if !defined(NO_ACTION_LAYER) && defined(PREVENT_STUCK_MODIFIERS)

@ -64,8 +64,8 @@ void matrix_power_up(void);
void matrix_power_down(void); void matrix_power_down(void);
/* keyboard-specific setup/loop functionality */ /* keyboard-specific setup/loop functionality */
void matrix_init_kb(void); void matrix_init_quantum(void);
void matrix_scan_kb(void); void matrix_scan_quantum(void);
#ifdef __cplusplus #ifdef __cplusplus
} }

Loading…
Cancel
Save