adds is31fl3731 rgb matrix implementation

rgb_matrix
Jack Humbert 7 years ago
parent b7bb923962
commit 16de11fbc5

@ -107,6 +107,15 @@ ifeq ($(strip $(RGBLIGHT_ENABLE)), yes)
endif endif
endif endif
ifeq ($(strip $(RGB_MATRIX_ENABLE)), yes)
OPT_DEFS += -DRGB_MATRIX_ENABLE
SRC += is31fl3731.c
SRC += TWIlib.c
SRC += $(QUANTUM_DIR)/color.c
SRC += $(QUANTUM_DIR)/rgb_matrix.c
CIE1931_CURVE = yes
endif
ifeq ($(strip $(TAP_DANCE_ENABLE)), yes) ifeq ($(strip $(TAP_DANCE_ENABLE)), yes)
OPT_DEFS += -DTAP_DANCE_ENABLE OPT_DEFS += -DTAP_DANCE_ENABLE
SRC += $(QUANTUM_DIR)/process_keycode/process_tap_dance.c SRC += $(QUANTUM_DIR)/process_keycode/process_tap_dance.c

@ -0,0 +1,232 @@
/*
* TWIlib.c
*
* Created: 6/01/2014 10:41:33 PM
* Author: Chris Herring
* http://www.chrisherring.net/all/tutorial-interrupt-driven-twi-interface-for-avr-part1/
*/
#include <avr/io.h>
#include <avr/interrupt.h>
#include "TWIlib.h"
#include "util/delay.h"
void TWIInit()
{
TWIInfo.mode = Ready;
TWIInfo.errorCode = 0xFF;
TWIInfo.repStart = 0;
// Set pre-scalers (no pre-scaling)
TWSR = 0;
// Set bit rate
TWBR = ((F_CPU / TWI_FREQ) - 16) / 2;
// Enable TWI and interrupt
TWCR = (1 << TWIE) | (1 << TWEN);
}
uint8_t isTWIReady()
{
if ( (TWIInfo.mode == Ready) | (TWIInfo.mode == RepeatedStartSent) )
{
return 1;
}
else
{
return 0;
}
}
uint8_t TWITransmitData(void *const TXdata, uint8_t dataLen, uint8_t repStart)
{
if (dataLen <= TXMAXBUFLEN)
{
// Wait until ready
while (!isTWIReady()) {_delay_us(1);}
// Set repeated start mode
TWIInfo.repStart = repStart;
// Copy data into the transmit buffer
uint8_t *data = (uint8_t *)TXdata;
for (int i = 0; i < dataLen; i++)
{
TWITransmitBuffer[i] = data[i];
}
// Copy transmit info to global variables
TXBuffLen = dataLen;
TXBuffIndex = 0;
// If a repeated start has been sent, then devices are already listening for an address
// and another start does not need to be sent.
if (TWIInfo.mode == RepeatedStartSent)
{
TWIInfo.mode = Initializing;
TWDR = TWITransmitBuffer[TXBuffIndex++]; // Load data to transmit buffer
TWISendTransmit(); // Send the data
}
else // Otherwise, just send the normal start signal to begin transmission.
{
TWIInfo.mode = Initializing;
TWISendStart();
}
}
else
{
return 1; // return an error if data length is longer than buffer
}
return 0;
}
uint8_t TWIReadData(uint8_t TWIaddr, uint8_t bytesToRead, uint8_t repStart)
{
// Check if number of bytes to read can fit in the RXbuffer
if (bytesToRead < RXMAXBUFLEN)
{
// Reset buffer index and set RXBuffLen to the number of bytes to read
RXBuffIndex = 0;
RXBuffLen = bytesToRead;
// Create the one value array for the address to be transmitted
uint8_t TXdata[1];
// Shift the address and AND a 1 into the read write bit (set to write mode)
TXdata[0] = (TWIaddr << 1) | 0x01;
// Use the TWITransmitData function to initialize the transfer and address the slave
TWITransmitData(TXdata, 1, repStart);
}
else
{
return 0;
}
return 1;
}
ISR (TWI_vect)
{
switch (TWI_STATUS)
{
// ----\/ ---- MASTER TRANSMITTER OR WRITING ADDRESS ----\/ ---- //
case TWI_MT_SLAW_ACK: // SLA+W transmitted and ACK received
// Set mode to Master Transmitter
TWIInfo.mode = MasterTransmitter;
case TWI_START_SENT: // Start condition has been transmitted
case TWI_MT_DATA_ACK: // Data byte has been transmitted, ACK received
if (TXBuffIndex < TXBuffLen) // If there is more data to send
{
TWDR = TWITransmitBuffer[TXBuffIndex++]; // Load data to transmit buffer
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
TWISendTransmit(); // Send the data
}
// This transmission is complete however do not release bus yet
else if (TWIInfo.repStart)
{
TWIInfo.errorCode = 0xFF;
TWISendStart();
}
// All transmissions are complete, exit
else
{
TWIInfo.mode = Ready;
TWIInfo.errorCode = 0xFF;
TWISendStop();
}
break;
// ----\/ ---- MASTER RECEIVER ----\/ ---- //
case TWI_MR_SLAR_ACK: // SLA+R has been transmitted, ACK has been received
// Switch to Master Receiver mode
TWIInfo.mode = MasterReceiver;
// If there is more than one byte to be read, receive data byte and return an ACK
if (RXBuffIndex < RXBuffLen-1)
{
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
TWISendACK();
}
// Otherwise when a data byte (the only data byte) is received, return NACK
else
{
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
TWISendNACK();
}
break;
case TWI_MR_DATA_ACK: // Data has been received, ACK has been transmitted.
/// -- HANDLE DATA BYTE --- ///
TWIReceiveBuffer[RXBuffIndex++] = TWDR;
// If there is more than one byte to be read, receive data byte and return an ACK
if (RXBuffIndex < RXBuffLen-1)
{
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
TWISendACK();
}
// Otherwise when a data byte (the only data byte) is received, return NACK
else
{
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
TWISendNACK();
}
break;
case TWI_MR_DATA_NACK: // Data byte has been received, NACK has been transmitted. End of transmission.
/// -- HANDLE DATA BYTE --- ///
TWIReceiveBuffer[RXBuffIndex++] = TWDR;
// This transmission is complete however do not release bus yet
if (TWIInfo.repStart)
{
TWIInfo.errorCode = 0xFF;
TWISendStart();
}
// All transmissions are complete, exit
else
{
TWIInfo.mode = Ready;
TWIInfo.errorCode = 0xFF;
TWISendStop();
}
break;
// ----\/ ---- MT and MR common ----\/ ---- //
case TWI_MR_SLAR_NACK: // SLA+R transmitted, NACK received
case TWI_MT_SLAW_NACK: // SLA+W transmitted, NACK received
case TWI_MT_DATA_NACK: // Data byte has been transmitted, NACK received
case TWI_LOST_ARBIT: // Arbitration has been lost
// Return error and send stop and set mode to ready
if (TWIInfo.repStart)
{
TWIInfo.errorCode = TWI_STATUS;
TWISendStart();
}
// All transmissions are complete, exit
else
{
TWIInfo.mode = Ready;
TWIInfo.errorCode = TWI_STATUS;
TWISendStop();
}
break;
case TWI_REP_START_SENT: // Repeated start has been transmitted
// Set the mode but DO NOT clear TWINT as the next data is not yet ready
TWIInfo.mode = RepeatedStartSent;
break;
// ----\/ ---- SLAVE RECEIVER ----\/ ---- //
// TODO IMPLEMENT SLAVE RECEIVER FUNCTIONALITY
// ----\/ ---- SLAVE TRANSMITTER ----\/ ---- //
// TODO IMPLEMENT SLAVE TRANSMITTER FUNCTIONALITY
// ----\/ ---- MISCELLANEOUS STATES ----\/ ---- //
case TWI_NO_RELEVANT_INFO: // It is not really possible to get into this ISR on this condition
// Rather, it is there to be manually set between operations
break;
case TWI_ILLEGAL_START_STOP: // Illegal START/STOP, abort and return error
TWIInfo.errorCode = TWI_ILLEGAL_START_STOP;
TWIInfo.mode = Ready;
TWISendStop();
break;
}
}

@ -0,0 +1,82 @@
/*
* TWIlib.h
*
* Created: 6/01/2014 10:38:42 PM
* Author: Chris Herring
* http://www.chrisherring.net/all/tutorial-interrupt-driven-twi-interface-for-avr-part1/
*/
#ifndef TWILIB_H_
#define TWILIB_H_
// TWI bit rate (was 100000)
#define TWI_FREQ 400000
// Get TWI status
#define TWI_STATUS (TWSR & 0xF8)
// Transmit buffer length
#define TXMAXBUFLEN 20
// Receive buffer length
#define RXMAXBUFLEN 20
// Global transmit buffer
uint8_t TWITransmitBuffer[TXMAXBUFLEN];
// Global receive buffer
volatile uint8_t TWIReceiveBuffer[RXMAXBUFLEN];
// Buffer indexes
volatile int TXBuffIndex; // Index of the transmit buffer. Is volatile, can change at any time.
int RXBuffIndex; // Current index in the receive buffer
// Buffer lengths
int TXBuffLen; // The total length of the transmit buffer
int RXBuffLen; // The total number of bytes to read (should be less than RXMAXBUFFLEN)
typedef enum {
Ready,
Initializing,
RepeatedStartSent,
MasterTransmitter,
MasterReceiver,
SlaceTransmitter,
SlaveReciever
} TWIMode;
typedef struct TWIInfoStruct{
TWIMode mode;
uint8_t errorCode;
uint8_t repStart;
}TWIInfoStruct;
TWIInfoStruct TWIInfo;
// TWI Status Codes
#define TWI_START_SENT 0x08 // Start sent
#define TWI_REP_START_SENT 0x10 // Repeated Start sent
// Master Transmitter Mode
#define TWI_MT_SLAW_ACK 0x18 // SLA+W sent and ACK received
#define TWI_MT_SLAW_NACK 0x20 // SLA+W sent and NACK received
#define TWI_MT_DATA_ACK 0x28 // DATA sent and ACK received
#define TWI_MT_DATA_NACK 0x30 // DATA sent and NACK received
// Master Receiver Mode
#define TWI_MR_SLAR_ACK 0x40 // SLA+R sent, ACK received
#define TWI_MR_SLAR_NACK 0x48 // SLA+R sent, NACK received
#define TWI_MR_DATA_ACK 0x50 // Data received, ACK returned
#define TWI_MR_DATA_NACK 0x58 // Data received, NACK returned
// Miscellaneous States
#define TWI_LOST_ARBIT 0x38 // Arbitration has been lost
#define TWI_NO_RELEVANT_INFO 0xF8 // No relevant information available
#define TWI_ILLEGAL_START_STOP 0x00 // Illegal START or STOP condition has been detected
#define TWI_SUCCESS 0xFF // Successful transfer, this state is impossible from TWSR as bit2 is 0 and read only
#define TWISendStart() (TWCR = (1<<TWINT)|(1<<TWSTA)|(1<<TWEN)|(1<<TWIE)) // Send the START signal, enable interrupts and TWI, clear TWINT flag to resume transfer.
#define TWISendStop() (TWCR = (1<<TWINT)|(1<<TWSTO)|(1<<TWEN)|(1<<TWIE)) // Send the STOP signal, enable interrupts and TWI, clear TWINT flag.
#define TWISendTransmit() (TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWIE)) // Used to resume a transfer, clear TWINT and ensure that TWI and interrupts are enabled.
#define TWISendACK() (TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWIE)|(1<<TWEA)) // FOR MR mode. Resume a transfer, ensure that TWI and interrupts are enabled and respond with an ACK if the device is addressed as a slave or after it receives a byte.
#define TWISendNACK() (TWCR = (1<<TWINT)|(1<<TWEN)|(1<<TWIE)) // FOR MR mode. Resume a transfer, ensure that TWI and interrupts are enabled but DO NOT respond with an ACK if the device is addressed as a slave or after it receives a byte.
// Function declarations
uint8_t TWITransmitData(void *const TXdata, uint8_t dataLen, uint8_t repStart);
void TWIInit(void);
uint8_t TWIReadData(uint8_t TWIaddr, uint8_t bytesToRead, uint8_t repStart);
uint8_t isTWIReady(void);
#endif // TWICOMMS_H_

@ -0,0 +1,357 @@
/* Copyright 2017 Jason Williams
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "is31fl3731.h"
#include <avr/interrupt.h>
#include <avr/io.h>
#include <util/delay.h>
#include <string.h>
#include "TWIlib.h"
#include "progmem.h"
// This is a 7-bit address, that gets left-shifted and bit 0
// set to 0 for write, 1 for read (as per I2C protocol)
// The address will vary depending on your wiring:
// 0b1110100 AD <-> GND
// 0b1110111 AD <-> VCC
// 0b1110101 AD <-> SCL
// 0b1110110 AD <-> SDA
#define ISSI_ADDR_DEFAULT 0x74
#define ISSI_REG_CONFIG 0x00
#define ISSI_REG_CONFIG_PICTUREMODE 0x00
#define ISSI_REG_CONFIG_AUTOPLAYMODE 0x08
#define ISSI_REG_CONFIG_AUDIOPLAYMODE 0x18
#define ISSI_CONF_PICTUREMODE 0x00
#define ISSI_CONF_AUTOFRAMEMODE 0x04
#define ISSI_CONF_AUDIOMODE 0x08
#define ISSI_REG_PICTUREFRAME 0x01
#define ISSI_REG_SHUTDOWN 0x0A
#define ISSI_REG_AUDIOSYNC 0x06
#define ISSI_COMMANDREGISTER 0xFD
#define ISSI_BANK_FUNCTIONREG 0x0B // helpfully called 'page nine'
// Transfer buffer for TWITransmitData()
uint8_t g_twi_transfer_buffer[TXMAXBUFLEN];
// These buffers match the IS31FL3731 PWM registers 0x24-0xB3.
// Storing them like this is optimal for I2C transfers to the registers.
// We could optimize this and take out the unused registers from these
// buffers and the transfers in IS31FL3731_write_pwm_buffer() but it's
// probably not worth the extra complexity.
uint8_t g_pwm_buffer[DRIVER_COUNT][144];
bool g_pwm_buffer_update_required = false;
uint8_t g_led_control_registers[DRIVER_COUNT][18] = { { 0 }, { 0 } };
bool g_led_control_registers_update_required = false;
typedef struct
{
uint8_t red_register;
uint8_t red_bit;
uint8_t green_register;
uint8_t green_bit;
uint8_t blue_register;
uint8_t blue_bit;
} led_control_bitmask;
// This is the bit pattern in the LED control registers
// (for matrix A, add one to register for matrix B)
//
// reg - b7 b6 b5 b4 b3 b2 b1 b0
// 0x00 - R08,R07,R06,R05,R04,R03,R02,R01
// 0x02 - G08,G07,G06,G05,G04,G03,G02,R00
// 0x04 - B08,B07,B06,B05,B04,B03,G01,G00
// 0x06 - - , - , - , - , - ,B02,B01,B00
// 0x08 - - , - , - , - , - , - , - , -
// 0x0A - B17,B16,B15, - , - , - , - , -
// 0x0C - G17,G16,B14,B13,B12,B11,B10,B09
// 0x0E - R17,G15,G14,G13,G12,G11,G10,G09
// 0x10 - R16,R15,R14,R13,R12,R11,R10,R09
const led_control_bitmask g_led_control_bitmask[18] =
{
{ 0x02, 0, 0x04, 0, 0x06, 0 }, // R00,G00,B00
{ 0x00, 0, 0x04, 1, 0x06, 1 }, // R01,G01,B01
{ 0x00, 1, 0x02, 1, 0x06, 2 }, // R02,G02,B02
{ 0x00, 2, 0x02, 2, 0x04, 2 }, // R03,G03,B03
{ 0x00, 3, 0x02, 3, 0x04, 3 }, // R04,G04,B04
{ 0x00, 4, 0x02, 4, 0x04, 4 }, // R05,G05,B05
{ 0x00, 5, 0x02, 5, 0x04, 5 }, // R06,G06,B06
{ 0x00, 6, 0x02, 6, 0x04, 6 }, // R07,G07,B07
{ 0x00, 7, 0x02, 7, 0x04, 7 }, // R08,G08,B08
{ 0x10, 0, 0x0E, 0, 0x0C, 0 }, // R09,G09,B09
{ 0x10, 1, 0x0E, 1, 0x0C, 1 }, // R10,G10,B10
{ 0x10, 2, 0x0E, 2, 0x0C, 2 }, // R11,G11,B11
{ 0x10, 3, 0x0E, 3, 0x0C, 3 }, // R12,G12,B12
{ 0x10, 4, 0x0E, 4, 0x0C, 4 }, // R13,G13,B13
{ 0x10, 5, 0x0E, 5, 0x0C, 5 }, // R14,G14,B14
{ 0x10, 6, 0x0E, 6, 0x0A, 5 }, // R15,G15,B15
{ 0x10, 7, 0x0C, 6, 0x0A, 6 }, // R16,G16,B16
{ 0x0E, 7, 0x0C, 7, 0x0A, 7 }, // R17,G17,B17
};
const uint8_t g_map_control_index_to_register[2][18][3] PROGMEM = {
{
{0x34, 0x44, 0x54}, // 00
{0x24, 0x45, 0x55}, // 01
{0x25, 0x35, 0x56}, // 02
{0x26, 0x36, 0x46}, // 03
{0x27, 0x37, 0x47}, // 04
{0x28, 0x38, 0x48}, // 05
{0x29, 0x39, 0x49}, // 06
{0x2a, 0x3a, 0x4a}, // 07
{0x2b, 0x3b, 0x4b}, // 08
{0xa4, 0x94, 0x84}, // 09
{0xa5, 0x95, 0x85}, // 10
{0xa6, 0x96, 0x86}, // 11
{0xa7, 0x97, 0x87}, // 12
{0xa8, 0x98, 0x88}, // 13
{0xa9, 0x99, 0x89}, // 14
{0xaa, 0x9a, 0x79}, // 15
{0xab, 0x8a, 0x7a}, // 16
{0x9b, 0x8b, 0x7b} // 17
}, {
{0x34 + 8, 0x44 + 8, 0x54 + 8}, // 00
{0x24 + 8, 0x45 + 8, 0x55 + 8}, // 01
{0x25 + 8, 0x35 + 8, 0x56 + 8}, // 02
{0x26 + 8, 0x36 + 8, 0x46 + 8}, // 03
{0x27 + 8, 0x37 + 8, 0x47 + 8}, // 04
{0x28 + 8, 0x38 + 8, 0x48 + 8}, // 05
{0x29 + 8, 0x39 + 8, 0x49 + 8}, // 06
{0x2a + 8, 0x3a + 8, 0x4a + 8}, // 07
{0x2b + 8, 0x3b + 8, 0x4b + 8}, // 08
{0xa4 + 8, 0x94 + 8, 0x84 + 8}, // 09
{0xa5 + 8, 0x95 + 8, 0x85 + 8}, // 10
{0xa6 + 8, 0x96 + 8, 0x86 + 8}, // 11
{0xa7 + 8, 0x97 + 8, 0x87 + 8}, // 12
{0xa8 + 8, 0x98 + 8, 0x88 + 8}, // 13
{0xa9 + 8, 0x99 + 8, 0x89 + 8}, // 14
{0xaa + 8, 0x9a + 8, 0x79 + 8}, // 15
{0xab + 8, 0x8a + 8, 0x7a + 8}, // 16
{0x9b + 8, 0x8b + 8, 0x7b + 8} // 17
}};
void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data )
{
g_twi_transfer_buffer[0] = (addr << 1) | 0x00;
g_twi_transfer_buffer[1] = reg;
g_twi_transfer_buffer[2] = data;
// Set the error code to have no relevant information
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
// Continuously attempt to transmit data until a successful transmission occurs
//while ( TWIInfo.errorCode != 0xFF )
//{
TWITransmitData( g_twi_transfer_buffer, 3, 0 );
//}
}
void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer )
{
// assumes bank is already selected
// transmit PWM registers in 9 transfers of 16 bytes
// g_twi_transfer_buffer[] is 20 bytes
// set the I2C address
g_twi_transfer_buffer[0] = (addr << 1) | 0x00;
// iterate over the pwm_buffer contents at 16 byte intervals
for ( int i = 0; i < 144; i += 16 )
{
// set the first register, e.g. 0x24, 0x34, 0x44, etc.
g_twi_transfer_buffer[1] = 0x24 + i;
// copy the data from i to i+15
// device will auto-increment register for data after the first byte
// thus this sets registers 0x24-0x33, 0x34-0x43, etc. in one transfer
for ( int j = 0; j < 16; j++ )
{
g_twi_transfer_buffer[2 + j] = pwm_buffer[i + j];
}
// Set the error code to have no relevant information
TWIInfo.errorCode = TWI_NO_RELEVANT_INFO;
// Continuously attempt to transmit data until a successful transmission occurs
while ( TWIInfo.errorCode != 0xFF )
{
TWITransmitData( g_twi_transfer_buffer, 16 + 2, 0 );
}
}
}
void IS31FL3731_init( uint8_t addr )
{
// In order to avoid the LEDs being driven with garbage data
// in the LED driver's PWM registers, first enable software shutdown,
// then set up the mode and other settings, clear the PWM registers,
// then disable software shutdown.
// select "function register" bank
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
// enable software shutdown
IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x00 );
// this delay was copied from other drivers, might not be needed
_delay_ms( 10 );
// picture mode
IS31FL3731_write_register( addr, ISSI_REG_CONFIG, ISSI_REG_CONFIG_PICTUREMODE );
// display frame 0
IS31FL3731_write_register( addr, ISSI_REG_PICTUREFRAME, 0x00 );
// audio sync off
IS31FL3731_write_register( addr, ISSI_REG_AUDIOSYNC, 0x00 );
// select bank 0
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
// turn off all LEDs in the LED control register
for ( int i = 0x00; i <= 0x11; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// turn off all LEDs in the blink control register (not really needed)
for ( int i = 0x12; i <= 0x23; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// set PWM on all LEDs to 0
for ( int i = 0x24; i <= 0xB3; i++ )
{
IS31FL3731_write_register( addr, i, 0x00 );
}
// select "function register" bank
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, ISSI_BANK_FUNCTIONREG );
// disable software shutdown
IS31FL3731_write_register( addr, ISSI_REG_SHUTDOWN, 0x01 );
// select bank 0 and leave it selected.
// most usage after initialization is just writing PWM buffers in bank 0
// as there's not much point in double-buffering
IS31FL3731_write_register( addr, ISSI_COMMANDREGISTER, 0 );
}
void map_index_to_led( uint8_t index, is31_led *led ) {
//led = , sizeof(struct is31_led));
// led->driver = addr->driver;
// led->matrix = addr->matrix;
// led->modifier = addr->modifier;
// led->control_index = addr->control_index;
// led->matrix_co.raw = addr->matrix_co.raw;
// led->driver = (pgm_read_byte(addr) >> 6) && 0b11;
// led->matrix = (pgm_read_byte(addr) >> 4) && 0b1;
// led->modifier = (pgm_read_byte(addr) >> 3) && 0b1;
// led->control_index = pgm_read_byte(addr+1);
// led->matrix_co.raw = pgm_read_byte(addr+2);
}
void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue )
{
if ( index >= 0 && index < DRIVER_LED_TOTAL )
{
is31_led led = g_is31_leds[index];
//map_index_to_led(index, &led);
// Subtract 0x24 to get the second index of g_pwm_buffer
g_pwm_buffer[led.driver][ pgm_read_byte(&g_map_control_index_to_register[led.matrix][led.control_index][0]) - 0x24] = red;
g_pwm_buffer[led.driver][ pgm_read_byte(&g_map_control_index_to_register[led.matrix][led.control_index][1]) - 0x24] = green;
g_pwm_buffer[led.driver][ pgm_read_byte(&g_map_control_index_to_register[led.matrix][led.control_index][2]) - 0x24] = blue;
g_pwm_buffer_update_required = true;
}
}
void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue )
{
for ( int i = 0; i < DRIVER_LED_TOTAL; i++ )
{
IS31FL3731_set_color( i, red, green, blue );
}
}
void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, bool blue )
{
is31_led led = g_is31_leds[index];
// map_index_to_led(index, &led);
led_control_bitmask bitmask = g_led_control_bitmask[led.control_index];
// Matrix A and B registers are interleaved.
// Add 1 to Matrix A register to get Matrix B register
if ( red )
{
g_led_control_registers[led.driver][bitmask.red_register+led.matrix] |= (1<<bitmask.red_bit);
}
else
{
g_led_control_registers[led.driver][bitmask.red_register+led.matrix] &= ~(1<<bitmask.red_bit);
}
if ( green )
{
g_led_control_registers[led.driver][bitmask.green_register+led.matrix] |= (1<<bitmask.green_bit);
}
else
{
g_led_control_registers[led.driver][bitmask.green_register+led.matrix] &= ~(1<<bitmask.green_bit);
}
if ( blue )
{
g_led_control_registers[led.driver][bitmask.blue_register+led.matrix] |= (1<<bitmask.blue_bit);
}
else
{
g_led_control_registers[led.driver][bitmask.blue_register+led.matrix] &= ~(1<<bitmask.blue_bit);
}
g_led_control_registers_update_required = true;
}
void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 )
{
if ( g_pwm_buffer_update_required )
{
IS31FL3731_write_pwm_buffer( addr1, g_pwm_buffer[0] );
IS31FL3731_write_pwm_buffer( addr2, g_pwm_buffer[1] );
}
g_pwm_buffer_update_required = false;
}
void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 )
{
if ( g_led_control_registers_update_required )
{
for ( int i=0; i<18; i++ )
{
IS31FL3731_write_register(addr1, i, g_led_control_registers[0][i] );
IS31FL3731_write_register(addr2, i, g_led_control_registers[1][i] );
}
}
}

@ -0,0 +1,64 @@
/* Copyright 2017 Jason Williams
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef IS31FL3731_DRIVER_H
#define IS31FL3731_DRIVER_H
#include <stdint.h>
#include <stdbool.h>
typedef struct Point {
uint8_t x;
uint8_t y;
} __attribute__((packed)) Point;
typedef struct is31_led {
uint8_t driver:2;
uint8_t matrix:1;
uint8_t modifier:1;
uint8_t control_index;
union {
uint8_t raw;
struct {
uint8_t row:4; // 16 max
uint8_t col:4; // 16 max
};
} matrix_co;
Point point;
} __attribute__((packed)) is31_led;
extern const is31_led g_is31_leds[DRIVER_LED_TOTAL];
void map_index_to_led( uint8_t index, is31_led *led );
void IS31FL3731_init( uint8_t addr );
void IS31FL3731_write_register( uint8_t addr, uint8_t reg, uint8_t data );
void IS31FL3731_write_pwm_buffer( uint8_t addr, uint8_t *pwm_buffer );
void IS31FL3731_set_color( int index, uint8_t red, uint8_t green, uint8_t blue );
void IS31FL3731_set_color_all( uint8_t red, uint8_t green, uint8_t blue );
void IS31FL3731_set_led_control_register( uint8_t index, bool red, bool green, bool blue );
// This should not be called from an interrupt
// (eg. from a timer interrupt).
// Call this while idle (in between matrix scans).
// If the buffer is dirty, it will update the driver with the buffer.
void IS31FL3731_update_pwm_buffers( uint8_t addr1, uint8_t addr2 );
void IS31FL3731_update_led_control_registers( uint8_t addr1, uint8_t addr2 );
#endif // IS31FL3731_DRIVER_H

@ -0,0 +1,87 @@
/* Copyright 2017 Jason Williams
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "color.h"
#include "led_tables.h"
#include "progmem.h"
RGB hsv_to_rgb( HSV hsv )
{
RGB rgb;
uint8_t region, p, q, t;
uint16_t h, s, v, remainder;
if ( hsv.s == 0 )
{
rgb.r = hsv.v;
rgb.g = hsv.v;
rgb.b = hsv.v;
return rgb;
}
h = hsv.h;
s = hsv.s;
v = hsv.v;
region = h / 43;
remainder = (h - (region * 43)) * 6;
p = (v * (255 - s)) >> 8;
q = (v * (255 - ((s * remainder) >> 8))) >> 8;
t = (v * (255 - ((s * (255 - remainder)) >> 8))) >> 8;
switch ( region )
{
case 0:
rgb.r = v;
rgb.g = t;
rgb.b = p;
break;
case 1:
rgb.r = q;
rgb.g = v;
rgb.b = p;
break;
case 2:
rgb.r = p;
rgb.g = v;
rgb.b = t;
break;
case 3:
rgb.r = p;
rgb.g = q;
rgb.b = v;
break;
case 4:
rgb.r = t;
rgb.g = p;
rgb.b = v;
break;
default:
rgb.r = v;
rgb.g = p;
rgb.b = q;
break;
}
rgb.r = pgm_read_byte( &CIE1931_CURVE[rgb.r] );
rgb.g = pgm_read_byte( &CIE1931_CURVE[rgb.g] );
rgb.b = pgm_read_byte( &CIE1931_CURVE[rgb.b] );
return rgb;
}

@ -0,0 +1,55 @@
/* Copyright 2017 Jason Williams
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef COLOR_H
#define COLOR_H
#include <stdint.h>
#include <stdbool.h>
#if defined(__GNUC__)
#define PACKED __attribute__ ((__packed__))
#else
#define PACKED
#endif
#if defined(_MSC_VER)
#pragma pack( push, 1 )
#endif
typedef struct PACKED
{
uint8_t r;
uint8_t g;
uint8_t b;
} RGB;
typedef struct PACKED
{
uint8_t h;
uint8_t s;
uint8_t v;
} HSV;
#if defined(_MSC_VER)
#pragma pack( pop )
#endif
RGB hsv_to_rgb( HSV hsv );
#endif // COLOR_H

@ -279,7 +279,7 @@ bool process_record_quantum(keyrecord_t *record) {
} }
return false; return false;
#endif #endif
#ifdef RGBLIGHT_ENABLE #if defined(RGBLIGHT_ENABLE) || defined(RGB_MATRIX_ENABLE)
case RGB_TOG: case RGB_TOG:
if (record->event.pressed) { if (record->event.pressed) {
rgblight_toggle(); rgblight_toggle();
@ -862,13 +862,14 @@ void backlight_set(uint8_t level)
} }
#endif #endif
#ifdef BACKLIGHT_BREATHING #if defined(BACKLIGHT_BREATHING)
breathing_intensity_default(); breathing_intensity_default();
#endif #endif
} }
uint8_t backlight_tick = 0; uint8_t backlight_tick = 0;
__attribute__ ((weak))
void backlight_task(void) { void backlight_task(void) {
#ifdef NO_BACKLIGHT_CLOCK #ifdef NO_BACKLIGHT_CLOCK
if ((0xFFFF >> ((BACKLIGHT_LEVELS - backlight_config.level) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) { if ((0xFFFF >> ((BACKLIGHT_LEVELS - backlight_config.level) * ((BACKLIGHT_LEVELS + 1) / 2))) & (1 << backlight_tick)) {
@ -894,6 +895,23 @@ void backlight_task(void) {
#ifdef BACKLIGHT_BREATHING #ifdef BACKLIGHT_BREATHING
#ifdef NO_BACKLIGHT_CLOCK
void breathing_enable(void) {}
void breathing_pulse(void) {}
void breathing_disable(void) {}
void breathing_self_disable(void) {}
void breathing_toggle(void) {}
bool is_breathing(void) { return false; }
void breathing_intensity_default(void) {}
void breathing_intensity_set(uint8_t value) {}
void breathing_speed_default(void) {}
void breathing_speed_set(uint8_t value) {}
void breathing_speed_inc(uint8_t value) {}
void breathing_speed_dec(uint8_t value) {}
void breathing_defaults(void) {}
#else
#define BREATHING_NO_HALT 0 #define BREATHING_NO_HALT 0
#define BREATHING_HALT_OFF 1 #define BREATHING_HALT_OFF 1
#define BREATHING_HALT_ON 2 #define BREATHING_HALT_ON 2
@ -1093,7 +1111,7 @@ ISR(TIMER1_COMPA_vect)
} }
#endif // no clock
#endif // breathing #endif // breathing
@ -1156,6 +1174,7 @@ void send_nibble(uint8_t number) {
__attribute__((weak)) __attribute__((weak))
uint16_t hex_to_keycode(uint8_t hex) uint16_t hex_to_keycode(uint8_t hex)
{ {
hex = hex & 0xF;
if (hex == 0x0) { if (hex == 0x0) {
return KC_0; return KC_0;
} else if (hex < 0xA) { } else if (hex < 0xA) {

@ -27,9 +27,15 @@
#ifdef BACKLIGHT_ENABLE #ifdef BACKLIGHT_ENABLE
#include "backlight.h" #include "backlight.h"
#endif #endif
#if !defined(RGBLIGHT_ENABLE) && !defined(RGB_MATRIX_ENABLE)
#include "rgb.h"
#endif
#ifdef RGBLIGHT_ENABLE #ifdef RGBLIGHT_ENABLE
#include "rgblight.h" #include "rgblight.h"
#endif #endif
#ifdef RGB_MATRIX_ENABLE
#include "rgb_matrix.h"
#endif
#include "action_layer.h" #include "action_layer.h"
#include "eeconfig.h" #include "eeconfig.h"
#include <stddef.h> #include <stddef.h>

@ -0,0 +1,44 @@
/* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef RGB_H
#define RGB_H
__attribute__((weak))
void rgblight_toggle(void) {};
__attribute__((weak))
void rgblight_step(void) {};
__attribute__((weak))
void rgblight_increase_hue(void) {};
__attribute__((weak))
void rgblight_decrease_hue(void) {};
__attribute__((weak))
void rgblight_increase_sat(void) {};
__attribute__((weak))
void rgblight_decrease_sat(void) {};
__attribute__((weak))
void rgblight_increase_val(void) {};
__attribute__((weak))
void rgblight_decrease_val(void) {};
#endif

File diff suppressed because it is too large Load Diff

@ -0,0 +1,122 @@
/* Copyright 2017 Jason Williams
* Copyright 2017 Jack Humbert
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef RGB_MATRIX_H
#define RGB_MATRIX_H
#include <stdint.h>
#include <stdbool.h>
#include "color.h"
#include "is31fl3731.h"
#include "quantum.h"
typedef struct
{
HSV color;
uint8_t index;
} zeal_indicator;
typedef struct
{
bool enabled:1; // |
bool use_split_left_shift:1; // |
bool use_split_right_shift:1; // |
bool use_7u_spacebar:1; // |
bool use_iso_enter:1; // |
bool disable_when_usb_suspended:1; // |
bool __pad6:1; // |
bool __pad7:1; // 1 byte
uint8_t disable_after_timeout; // 1 byte
uint8_t brightness; // 1 byte
uint8_t effect; // 1 byte
HSV color_1; // 3 bytes
HSV color_2; // 3 bytes
zeal_indicator caps_lock_indicator; // 4 bytes
zeal_indicator layer_1_indicator; // 4 bytes
zeal_indicator layer_2_indicator; // 4 bytes
zeal_indicator layer_3_indicator; // 4 bytes
uint16_t alphas_mods[5]; // 10 bytes
} rgb_matrix_config; // = 36 bytes
#define EEPROM_BACKLIGHT_CONFIG_ADDR ((void*)35)
// rgb_matrix_config uses 36 bytes
// 35+36=71
#define EEPROM_BACKLIGHT_KEY_COLOR_ADDR ((void*)71)
void backlight_effect_single_LED_test(void);
void backlight_config_set_alphas_mods( uint16_t *value );
void backlight_config_load(void);
void backlight_config_save(void);
void backlight_init_drivers(void);
void backlight_timer_init(void);
void backlight_timer_enable(void);
void backlight_timer_disable(void);
void backlight_set_suspend_state(bool state);
void backlight_set_indicator_state(uint8_t state);
void backlight_rgb_task(void);
// This should not be called from an interrupt
// (eg. from a timer interrupt).
// Call this while idle (in between matrix scans).
// If the buffer is dirty, it will update the driver with the buffer.
void backlight_update_pwm_buffers(void);
void backlight_set_key_hit(uint8_t row, uint8_t col);
void backlight_unset_key_hit(uint8_t row, uint8_t col);
void backlight_effect_increase(void);
void backlight_effect_decrease(void);
void backlight_brightness_increase(void);
void backlight_brightness_decrease(void);
void backlight_color_1_hue_increase(void);
void backlight_color_1_hue_decrease(void);
void backlight_color_1_sat_increase(void);
void backlight_color_1_sat_decrease(void);
void backlight_color_2_hue_increase(void);
void backlight_color_2_hue_decrease(void);
void backlight_color_2_sat_increase(void);
void backlight_color_2_sat_decrease(void);
void *backlight_get_key_color_eeprom_address(uint8_t led);
void backlight_get_key_color( uint8_t led, HSV *hsv );
void backlight_set_key_color( uint8_t row, uint8_t column, HSV hsv );
void backlight_test_led( uint8_t index, bool red, bool green, bool blue );
uint32_t backlight_get_tick(void);
void backlight_debug_led(bool state);
void rgblight_toggle(void);
void rgblight_step(void);
void rgblight_increase_hue(void);
void rgblight_decrease_hue(void);
void rgblight_increase_sat(void);
void rgblight_decrease_sat(void);
void rgblight_increase_val(void);
void rgblight_decrease_val(void);
void rgblight_mode(uint8_t mode);
uint32_t rgblight_get_mode(void);
#endif
Loading…
Cancel
Save