reorder mailbox msg data; formatting

example_keyboards
jpetermans 8 years ago
parent a144968807
commit 164a6c994b

@ -75,7 +75,7 @@ const uint16_t keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[_FNAV] = KEYMAP( \
KC_GRV, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, _______,KC_NO,\
KC_CAPS,_______,_______,_______,_______,_______,_______,KC_PGUP,KC_UP,KC_PGDN,KC_PSCR,_______,_______,KC_DEL, \
_______,M(0),KC_BTN2,_______,_______,_______,KC_HOME,KC_LEFT,KC_DOWN,KC_RGHT,KC_INS,_______,_______, \
_______,_______,KC_BTN2,_______,_______,_______,KC_HOME,KC_LEFT,KC_DOWN,KC_RGHT,KC_INS,_______,_______, \
_______,KC_APP,KC_BTN1,KC_CALC,_______,_______,KC_END,_______,_______,_______,_______,_______,KC_NO, \
_______,_______,_______, _______, F(CTLALTDEL),KC_NLCK,_______,_______ \
),
@ -119,7 +119,7 @@ enum macro_id {
ACTION_LEDS_DIM,
ACTION_LEDS_SINGLE,
ACTION_LEDS_PAGE,
ACTION_LEDS_FLASH,
ACTION_LEDS_FLASH
};
/* ==================================
@ -137,7 +137,6 @@ enum macro_id {
*/
//======== full page arrays =========
//LED Page 1 - _Numpad
//any change in array size needs to be mirrored in matrix_init_user
uint8_t led_numpad[16] = {
18,21,22,23,
@ -186,7 +185,7 @@ void action_function(keyrecord_t *record, uint8_t id, uint8_t opt) {
case ACTION_LEDS_ALL:
if(record->event.pressed) {
led_mode_global = led_mode_global == ALL ? MODE_SINGLE : ALL;
msg=(TOGGLE_ALL << 8) | 0;
msg=TOGGLE_ALL;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
}
break;
@ -194,7 +193,7 @@ void action_function(keyrecord_t *record, uint8_t id, uint8_t opt) {
case ACTION_LEDS_BACKLIGHT:
if(record->event.pressed) {
backlight_status_global ^= 1;
msg=(TOGGLE_BACKLIGHT << 8) | (backlight_status_global);
msg=(backlight_status_global << 8) | TOGGLE_BACKLIGHT;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
}
break;
@ -203,21 +202,21 @@ void action_function(keyrecord_t *record, uint8_t id, uint8_t opt) {
if(record->event.pressed) {
led_mode_global = led_mode_global == GAME ? MODE_SINGLE : GAME;
msg=(DISPLAY_PAGE << 8) | 4;
msg=(4 << 8) | DISPLAY_PAGE;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
}
break;
case ACTION_LEDS_BRIGHT:
if(record->event.pressed) {
msg=(STEP_BRIGHTNESS << 8) | 1;
msg=(1 << 8) | STEP_BRIGHTNESS;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
}
break;
case ACTION_LEDS_DIM:
if(record->event.pressed) {
msg=(STEP_BRIGHTNESS << 8) | 0;
msg=(0 << 8) | STEP_BRIGHTNESS;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
}
break;
@ -282,26 +281,25 @@ void matrix_scan_user(void) {
switch(led_mode_global) {
case MODE_FLASH: //flash preset page leds then single indicator
page = biton32(layer_state) > max_pages ? 7 : biton32(layer_state);
msg=(DISPLAY_PAGE << 8) | (page);
msg=(page << 8) | DISPLAY_PAGE;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
chThdSleepMilliseconds(500);
//flow to display single layer leds
case MODE_SINGLE: //light layer indicators for all active layers
led_pin_byte = layer_state & 0xFF;
msg=(DISPLAY_PAGE << 8) | 7;
msg=(7 << 8) | DISPLAY_PAGE;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
msg=(1<<16) | (SET_FULL_ROW << 8) | (led_pin_byte);
msg=(1<<16) | (led_pin_byte << 8) | SET_FULL_ROW;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
break;
case MODE_PAGE: //display pre-defined led page
page = biton32(layer_state) > max_pages ? 7 : biton32(layer_state);
msg=(DISPLAY_PAGE << 8) | (page);
msg=(page << 8) | DISPLAY_PAGE;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
break;
}
led_layer_state = layer_state;
}
}

@ -16,26 +16,24 @@ digits mean "row" and "col", i.e. 45 means pin 4, column 5 in the IS31 datasheet
```
*Unused in Alphabet Layout
The IS31 includes 8 pages (or frames) 0-7 and each page consists of 0xB4 (144) bytes
- **0 - 17**
* LED control (on/off).
The IS31 includes 8 pages (or frames) 0-7 and each page consists of 144 bytes
- **bytes 0 - 17** - LED control (on/off).
* 18 pins which alternate between A and B matrices (CA1, CB1, CA2, CB2, ..).
* Each byte controls the 8 leds on that pin with bits (8 to 1).
- **18 - 35**
* Blink control.
- **bytes 8 - 35** - Blink control.
* Same as LED control above, but sets blink on/off.
- **36 - 143**
* PWM control. One byte per LED, sets PWM from 0 to 255.
- **bytes 36 - 143** - PWM control.
* One byte per LED, sets PWM from 0 to 255.
* Same as above, the register alternates, every 8 *bytes* (not bits) between the A & B matrices.
## Led Controller Code
In the Infinity60 project folder, led_controller.c sets up ability to write led layers at startup or control leds on demand as part of fn_actions. By default led_controller.c assumes page 0 will be used for full on/off and page 7 for controlling individual leds. The remaining 6 pages (1-6) are free to preset led maps at init or on demand. Communication with the IS31 is primarily done through the led_mailbox using chMBPost described further below under "Sending messages in Keymap.c"
In the Infinity60 project folder, led_controller.c sets up ability to write led layers at startup or control leds on demand as part of fn_actions. By default led_controller.c assumes page 0 will be used for full on/off. The remaining 7 pages (1-7) are free for preset led maps or single led actions at init or on demand. Communication with the IS31 is primarily done through the led_mailbox using chMBPost described further below under "Sending messages in Keymap.c". This code is based on work matt3o and flabbergast did for tmk firmware on the [whitefox](https://github.com/tmk/whitefox).
One function is available to directly set leds without the mailbox:
```
write_led_page(page#, array of leds by address, # of leds in array)
```
This function saves a full page using a supplied array of led locations such as:
This function saves a full page to the controller using a supplied array of led locations such as:
```c
uint8_t led_numpad[16] = {
18,21,22,23,
@ -48,13 +46,9 @@ write_led_page(5, led_numpad, 16);
Remaining led control is done through the led mailbox using these message types:
- **SET_FULL_ROW** (3 bytes) - row#, message type, 8-bit mask. Sets all leds on one pin per the bit mask.
- **OFF_LED** (2 bytes) - message type, led address. Turn off specific led.
- **ON_LED** (2 bytes) - message type, led address. Turn on specific led.
- **TOGGLE_LED** (2 bytes) - message type, led address. Toggle specific led on/off.
- **BLINK_OFF_LED** (2 bytes) - message type, led address. Set blink off for specific led.
- **BLINK_ON_LED** (2 bytes) - message type, led address. Set blink on for specific led.
- **BLINK_TOGGLE_LED** (2 bytes) - message type, led address. Toggle blink for specific led.
- **TOGGLE_ALL** (2 bytes) - message type, not used. Turn on/off full backlight.
- **OFF_LED, ON_LED, TOGGLE_LED** (3 bytes) - message type, led address, and page#. Off/on/toggle specific led.
- **BLINK_OFF_LED, BLINK_ON_LED, BLINK_OFF_LED** (3 bytes) - message type, led address, and page#. Set blink Off/on/toggle for specific led.
- **TOGGLE_ALL** (1 byte) - Turn on/off full backlight.
- **TOGGLE_BACKLIGHT** (2 bytes) - message type, on/off. Sets backlight completely off, no leds will display.
- **DISPLAY_PAGE** (2 bytes) - message type, page to display. Switch to specific pre-set page.
- **RESET_PAGE** (2 bytes) - message type, page to reset. Reset/erase specific page.
@ -68,13 +62,13 @@ Sending an action to the led mailbox is done using chMBPost:
chMBPost(&led_mailbox, message, timeout);
```
- &led_mailbox - pointer to led mailbox
- message - up to 4 bytes but most messages use only 2. First byte (LSB) is the message to process, the second byte is type. The third is only used to pass row information in SET_FULL_ROW. The fourth byte is currently unused.
-timeout is usually TIME_IMMEDIATE
- message - up to 4 bytes but most messages use only 2. First byte (LSB) is the message type, the remaining three bytes are the message to process.
- timeout is TIME_IMMEDIATE
An example:
```c
//set the message to be sent. First byte (LSB) is the led address, and second is the message type
msg=(ON_LED << 8) | 42;
msg=(42 << 8) | ON_LED
//send msg to the led mailbox
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
@ -82,12 +76,12 @@ chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
Another:
```c
msg=(BLINK_TOGGLE_LED << 8) | 46;
msg=(46 << 8) | BLINK_TOGGLE_LED
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
```
Finally, SET_FULL_ROW requires an extra byte with row information in the message so sending this message looks like:
```c
msg=(row<<16) | (SET_FULL_ROW << 8) | (led_pin_byte);
msg=(row<<16) | (led_pin_byte << 8) | SET_FULL_ROW;
chMBPost(&led_mailbox, msg, TIME_IMMEDIATE);
```

@ -30,23 +30,23 @@ void led_set(uint8_t usb_led) {
if (usb_led & (1<<USB_LED_NUM_LOCK)) {
chSysUnconditionalLock();
msg=(TOGGLE_NUM_LOCK << 8) | 1;
msg=(1 << 8) | TOGGLE_NUM_LOCK;
chMBPostI(&led_mailbox, msg);
chSysUnconditionalUnlock();
} else {
chSysUnconditionalLock();
msg=(TOGGLE_NUM_LOCK << 8) | 0;
msg=(0 << 8) | TOGGLE_NUM_LOCK;
chMBPostI(&led_mailbox, msg);
chSysUnconditionalUnlock();
}
if (usb_led & (1<<USB_LED_CAPS_LOCK)) {
chSysUnconditionalLock();
msg=(TOGGLE_CAPS_LOCK << 8) | 1;
msg=(1 << 8) | TOGGLE_CAPS_LOCK;
chMBPostI(&led_mailbox, msg);
chSysUnconditionalUnlock();
} else {
chSysUnconditionalLock();
msg=(TOGGLE_CAPS_LOCK << 8) | 0;
msg=(0 << 8) | TOGGLE_CAPS_LOCK;
chMBPostI(&led_mailbox, msg);
chSysUnconditionalUnlock();
}

@ -143,9 +143,6 @@ void is31_init(void) {
palSetPadMode(GPIOB, 16, PAL_MODE_OUTPUT_PUSHPULL);
palSetPad(GPIOB, 16);
chThdSleepMilliseconds(10);
// software shutdown
is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, 0);
chThdSleepMilliseconds(10);
// software shutdown disable (i.e. turn stuff on)
is31_write_register(IS31_FUNCTIONREG, IS31_REG_SHUTDOWN, IS31_REG_SHUTDOWN_ON);
chThdSleepMilliseconds(10);
@ -153,7 +150,7 @@ void is31_init(void) {
uint8_t i;
for(i=0; i<8; i++) {
is31_write_data(i, full_page, 0xB4 + 1);
chThdSleepMilliseconds(1);
chThdSleepMilliseconds(5);
}
}
@ -176,64 +173,65 @@ static THD_FUNCTION(LEDthread, arg) {
uint8_t pwm_step_status, page_status;
//mailbox variables
uint8_t temp, msg_type, msg_pin, msg_col, msg_led;
uint8_t temp, msg_type;
uint8_t msg_args[3];
msg_t msg;
// initialize persistent variables
pwm_step_status = 4; //full brightness
page_status = 0; //start frame 0 (all off/on)
// initialize persistent variables
pwm_step_status = 4; //full brightness
page_status = 0; //start frame 0 (all off/on)
while(true) {
// wait for a message (asynchronous)
// (messages are queued (up to LED_MAILBOX_NUM_MSGS) if they can't
// be processed right away
chMBFetch(&led_mailbox, &msg, TIME_INFINITE);
msg_col = (msg >> 24) & 0xFF;//if needed
msg_pin = (msg >> 16) & 0XFF;//if needed (e.g. SET_FULL_ROW)
msg_type = (msg >> 8) & 0xFF; //second byte is msg type
msg_led = (msg) & 0xFF; //first byte is action information
msg_type = msg & 0xFF; //first byte is action information
msg_args[0] = (msg >> 8) & 0xFF;
msg_args[1] = (msg >> 16) & 0XFF;
msg_args[2] = (msg >> 24) & 0xFF;
switch (msg_type){
case SET_FULL_ROW:
//write full byte to pin address, msg_pin = pin #, msg_led = byte to write
//writes only to current page
write_led_byte(page_status,msg_pin,msg_led);
//write full byte to pin address, msg_args[1] = pin #, msg_args[0] = 8 bits to write
//writes only to currently displayed page
write_led_byte(page_status, msg_args[1], msg_args[0]);
break;
case OFF_LED:
//on/off/toggle single led, msg_led = row/col of led
set_led_bit(7, control_register_word, msg_led, 0);
is31_write_data (7, control_register_word, 0x02);
//on/off/toggle single led, msg_args[0] = row/col of led
set_led_bit(msg_args[1], control_register_word, msg_args[0], 0);
is31_write_data (msg_args[1], control_register_word, 0x02);
break;
case ON_LED:
set_led_bit(7, control_register_word, msg_led, 1);
is31_write_data (7, control_register_word, 0x02);
set_led_bit(msg_args[1], control_register_word, msg_args[0], 1);
is31_write_data (msg_args[1], control_register_word, 0x02);
break;
case TOGGLE_LED:
set_led_bit(7, control_register_word, msg_led, 2);
is31_write_data (7, control_register_word, 0x02);
set_led_bit(msg_args[1], control_register_word, msg_args[0], 2);
is31_write_data (msg_args[1], control_register_word, 0x02);
break;
case BLINK_OFF_LED:
//on/off/toggle single led, msg_led = row/col of led
set_led_bit(7, control_register_word, msg_led, 4);
is31_write_data (7, control_register_word, 0x02);
//on/off/toggle single led, msg_args[0] = row/col of led
set_led_bit(msg_args[1], control_register_word, msg_args[0], 4);
is31_write_data (msg_args[1], control_register_word, 0x02);
break;
case BLINK_ON_LED:
set_led_bit(7, control_register_word, msg_led, 5);
is31_write_data (7, control_register_word, 0x02);
set_led_bit(msg_args[1], control_register_word, msg_args[0], 5);
is31_write_data (msg_args[1], control_register_word, 0x02);
break;
case BLINK_TOGGLE_LED:
set_led_bit(7, control_register_word, msg_led, 6);
is31_write_data (7, control_register_word, 0x02);
set_led_bit(msg_args[1], control_register_word, msg_args[0], 6);
is31_write_data (msg_args[1], control_register_word, 0x02);
break;
case TOGGLE_ALL:
//msg_led = unused
//turn on/off all leds, msg_args = unused
is31_read_register(0, 0x00, &temp);
led_control_reg[0] = 0;
//if first byte is on, then toggle frame 0 off
//if first leds are already on, toggle frame 0 off
if (temp==0 || page_status > 0) {
__builtin_memcpy(led_control_reg+1, all_on_leds_mask, 0x12);
} else {
@ -252,27 +250,27 @@ page_status = 0; //start frame 0 (all off/on)
break;
case TOGGLE_BACKLIGHT:
//msg_led = on/off
//msg_args[0] = on/off
//populate the 9 byte rows to be written to each pin, first byte is register (pin) address
if (msg_led == 1) {
//populate 9 byte rows to be written to each pin, first byte is register (pin) address
if (msg_args[0] == 1) {
__builtin_memset(pwm_register_array+1, pwm_levels[pwm_step_status], 8);
} else {
__builtin_memset(pwm_register_array+1, 0, 8);
}
for(i=0; i<8; i++) {
//first byte is register address, every 0x10 9 bytes is A-register pwm pins
//first byte is register address, every 0x10 9 bytes is A-matrix pwm pins
pwm_register_array[0] = 0x24 + (i * 0x10);
is31_write_data(0,pwm_register_array,9);
}
break;
case DISPLAY_PAGE:
//msg_led = page to toggle on
if (page_status != msg_led) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, msg_led);
page_status = msg_led;
//msg_args[0] = page to toggle on
if (page_status != msg_args[0]) {
is31_write_register(IS31_FUNCTIONREG, IS31_REG_PICTDISP, msg_args[0]);
page_status = msg_args[0];
//maintain lock leds
led_set(host_keyboard_leds());
@ -280,24 +278,24 @@ page_status = 0; //start frame 0 (all off/on)
break;
case RESET_PAGE:
//led_msg = page to reset
//led_args[0] = page to reset
led_control_reg[0] = 0;
__builtin_memset(led_control_reg+1, 0, 0x12);
is31_write_data(msg_led, led_control_reg, 0x13);
is31_write_data(msg_args[0], led_control_reg, 0x13);
break;
case TOGGLE_NUM_LOCK:
//msg_led = 0 or 1, off/on
set_lock_leds(NUM_LOCK_LED_ADDRESS, msg_led, page_status);
//msg_args[0] = 0 or 1, off/on
set_lock_leds(NUM_LOCK_LED_ADDRESS, msg_args[0], page_status);
break;
case TOGGLE_CAPS_LOCK:
//msg_led = 0 or 1, off/on
set_lock_leds(CAPS_LOCK_LED_ADDRESS, msg_led, page_status);
//msg_args[0] = 0 or 1, off/on
set_lock_leds(CAPS_LOCK_LED_ADDRESS, msg_args[0], page_status);
break;
case STEP_BRIGHTNESS:
//led_msg = step pwm up or down
switch (msg_led) {
//led_args[0] = step up (1) or down (0)
switch (msg_args[0]) {
case 0:
if (pwm_step_status == 0) {
pwm_step_status = 4;
@ -316,7 +314,7 @@ page_status = 0; //start frame 0 (all off/on)
}
//populate 8 byte arrays to write on each pin
//first byte is register address, every 0x10 9 bytes are A-register pwm pins
//first byte is register address, every 0x10 9 bytes are A-matrix pwm pins
__builtin_memset(pwm_register_array+1, pwm_levels[pwm_step_status], 8);
for(i=0; i<8; i++) {
@ -334,9 +332,9 @@ page_status = 0; //start frame 0 (all off/on)
void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint8_t action) {
//returns 2 bytes: led control register address and byte to write
//0 - bit off, 1 - bit on, 2 - toggle bit
//action: 0 - off, 1 - on, 2 - toggle, 4 - blink on, 5 - blink off, 6 - toggle blink
uint8_t control_reg_addr, column_bit, column_byte, bit_temp, blink_on;
uint8_t control_reg_addr, column_bit, column_byte, temp, blink_bit;
//check for valid led address
if (led_addr < 0 || led_addr > 87 || led_addr % 10 > 8) {
@ -344,17 +342,17 @@ void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint
}
//check for blink bit
blink_on = action>>2;
blink_bit = action>>2;
action &= ~(1<<2); //strip blink bit
//first byte is led control register address 0x00
//msg_led tens column is pin#, ones column is bit position in 8-bit mask
control_reg_addr = ((led_addr / 10) % 10 - 1 ) * 0x02;// A-register is every other byte
control_reg_addr += blink_on == 1 ? 0x12 : 0x00;//shift 12 bytes to blink register
//led_addr tens column is pin#, ones column is bit position in 8-bit mask
control_reg_addr = ((led_addr / 10) % 10 - 1 ) * 0x02;// A-matrix is every other byte
control_reg_addr += blink_bit == 1 ? 0x12 : 0x00;//if blink_bit, shift 12 bytes to blink register
is31_read_register(page, control_reg_addr, &bit_temp);//maintain status of leds on this byte
is31_read_register(page, control_reg_addr, &temp);//maintain status of leds on this byte
column_bit = 1<<(led_addr % 10 - 1);
column_byte = bit_temp;
column_byte = temp;
switch(action) {
case 0:
@ -376,7 +374,7 @@ void set_led_bit (uint8_t page, uint8_t *led_control_reg, uint8_t led_addr, uint
void write_led_byte (uint8_t page, uint8_t row, uint8_t led_byte) {
uint8_t led_control_word[2] = {0};//register address and on/off byte
led_control_word[0] = (row - 1 ) * 0x02;// A-register is every other byte
led_control_word[0] = (row - 1 ) * 0x02;// A-matrix is every other byte
led_control_word[1] = led_byte;
is31_write_data(page, led_control_word, 0x02);
}
@ -389,7 +387,7 @@ void write_led_page (uint8_t page, uint8_t *user_led_array, uint8_t led_count) {
__builtin_memset(led_control_register,0,13);
for(i=0;i<led_count;i++){
// 1 byte shift for led register 0x00 address
//shift pin by 1 for led register 0x00 address
pin = ((user_led_array[i] / 10) % 10 - 1 ) * 2 + 1;
col = user_led_array[i] % 10 - 1;
led_control_register[pin] |= 1<<(col);
@ -399,13 +397,13 @@ void write_led_page (uint8_t page, uint8_t *user_led_array, uint8_t led_count) {
}
void set_lock_leds(uint8_t led_addr, uint8_t led_action, uint8_t page) {
uint8_t lock_temp;
uint8_t temp;
uint8_t led_control_word[2] = {0};
//blink if all leds are on
if (page == 0) {
is31_read_register(0, 0x00, &lock_temp);
if (lock_temp == 0xFF) {
is31_read_register(0, 0x00, &temp);
if (temp == 0xFF) {
led_action |= (1<<2); //set blink bit
}
}

Loading…
Cancel
Save