Bring dactyl/matrix.c in line with quantum/matrix.c (#2613)

* Use the new debounce algorithm in dactyl/matrix.c [#2065]

This incorporates the fixed/optimized debounce code added to
quantum/matrix.c in:

* 508eddf8ba
* 4c6960835c
* 32f88c0717
* f403028974
* a06115df19

* Fix the row/column swap in dactyl [#2065]

With a column-driven keyboard, reading from the mcp23081 returns a
column-state, which takes some extra work to translate into the
row-state used in the actual matrix. The ergodox_ez code sidestepped
that problem by calling rows "columns" and columns "rows." With this
change, the dactyl now calls rows "rows" and columns "columns."

* Cleanup: variable names, documentation [#2065]

* Support MATRIX_MASKED in dactyl/matrix.c [#2065]

* Only unselect one col in unselect_col [#2065]

Bonus: saves one i2c transaction per matrix_scan!

* Implement COL2ROW in dactyl/matrix.c [#2065]

* Fix a typo in dactyl/matrix.c

This entirely doesn't matter. The PORT values are set during
init_keyboard and never change. They're repeatedly set to the same
thing. These PORT lines shouldn't even exist, but since they do, they
should at least look right.

* Implement COL_PINS/ROW_PINS for dactyl [#2065]

* Rename "mcp23018" to "expander" [#2065]

I honestly don't know whether/how well this code works with other I/O
expanders, but at least in theory, it should be generic enough to work
with others. Given that, the variable names shouldn't refer to a
specific model of expander.

* Remove matrix_power_up from dactyl/matrix.c [#2065]

It's commented out in quantum/matrix.c, and the dactyl has no power
up/down behavior beyond being unplugged (which goes to matrix_init), so
there's no sense keeping it around.

* Only initialize expander_input_mask once [#2065]

...and rename input_mask to expander_input_mask, since now that it isn't
scoped to init_expander it isn't clear that it's only for the expander.
master
Erin Call 7 years ago committed by Jack Humbert
parent 642bf00baf
commit 050c21d35f

@ -30,12 +30,15 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#define PRODUCT Dactyl #define PRODUCT Dactyl
#define DESCRIPTION An ortholinear, split, 3D-curved keyboard with thumb clusters. #define DESCRIPTION An ortholinear, split, 3D-curved keyboard with thumb clusters.
/* key matrix size #define DIODE_DIRECTION ROW2COL
* At this time, "row" in the dactyl's code actually means "column" on the #define MATRIX_ROWS 6
* physical keyboard. It's confusing. I'm sorry. Blame Jack Humbert :P #define MATRIX_COLS 12
*/ #define COL_EXPANDED { true, true, true, true, true, true, false, false, false, false, false, false}
#define MATRIX_ROWS 12 #define MATRIX_ONBOARD_ROW_PINS { F0, F1, F4, F5, F6, F7 }
#define MATRIX_COLS 6 #define MATRIX_ONBOARD_COL_PINS { 0, 0, 0, 0, 0, 0, B1, B2, B3, D2, D3, C6 }
#define EXPANDER_COL_REGISTER 0
#define MATRIX_EXPANDER_COL_PINS {0, 1, 2, 3, 4, 5}
#define MATRIX_EXPANDER_ROW_PINS {0, 1, 2, 3, 4, 5}
#define MOUSEKEY_INTERVAL 20 #define MOUSEKEY_INTERVAL 20
#define MOUSEKEY_DELAY 0 #define MOUSEKEY_DELAY 0

@ -1,80 +1,15 @@
#include "dactyl.h" #include "dactyl.h"
#include "i2cmaster.h" #include "i2cmaster.h"
bool i2c_initialized = 0;
uint8_t mcp23018_status = 0x20;
void matrix_init_kb(void) {
DDRB &= ~(1<<4); // set B(4) as input
PORTB &= ~(1<<4); // set B(4) internal pull-up disabled
// unused pins - C7, D4, D5, D7, E6
// set as input with internal pull-up enabled
DDRC &= ~(1<<7);
DDRD &= ~(1<<5 | 1<<4);
DDRE &= ~(1<<6);
PORTC |= (1<<7);
PORTD |= (1<<5 | 1<<4);
PORTE |= (1<<6);
matrix_init_user();
}
uint8_t init_mcp23018(void) {
mcp23018_status = 0x20;
// I2C subsystem
if (i2c_initialized == 0) {
i2c_init(); // on pins D(1,0)
i2c_initialized = true;
_delay_ms(1000);
}
// set pin direction
// - unused : input : 1
// - input : input : 1
// - driving : output : 0
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(IODIRA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00000000); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00111111); if (mcp23018_status) goto out;
i2c_stop();
// set pull-up
// - unused : on : 1
// - input : on : 1
// - driving : off : 0
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPPUA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00000000); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0b00111111); if (mcp23018_status) goto out;
out:
i2c_stop();
return mcp23018_status;
}
#ifdef SWAP_HANDS_ENABLE #ifdef SWAP_HANDS_ENABLE
__attribute__ ((weak)) __attribute__ ((weak))
// swap-hands action needs a matrix to define the swap // swap-hands action needs a matrix to define the swap
const keypos_t hand_swap_config[MATRIX_ROWS][MATRIX_COLS] = { const keypos_t hand_swap_config[MATRIX_ROWS][MATRIX_COLS] = {
/* Left hand, matrix positions */ {{0,11}, {0,10}, {0,9}, {0,8}, {0,7}, {0,6}, {0,5}, {0,4}, {0,3}, {0,2}, {0,1}, {0,0}},
{{0,11}, {1,11}, {2,11}, {3,11}, {4,11}, {5,11}}, {{1,11}, {1,11}, {1,9}, {1,8}, {1,7}, {1,6}, {1,5}, {1,4}, {1,3}, {1,2}, {1,1}, {1,0}},
{{0,10}, {1,10}, {2,10}, {3,10}, {4,10}, {5,10}}, {{2,11}, {2,12}, {2,9}, {2,8}, {2,7}, {2,6}, {2,5}, {2,4}, {2,3}, {2,2}, {2,1}, {2,0}},
{{0,9}, {1,9}, {2,9}, {3,9}, {4,9}, {5,9}}, {{3,11}, {3,13}, {3,9}, {3,8}, {3,7}, {3,6}, {3,5}, {3,4}, {3,3}, {3,2}, {3,1}, {3,0}},
{{0,8}, {1,8}, {2,8}, {3,8}, {4,8}, {5,8}}, {{4,11}, {4,14}, {4,9}, {4,8}, {4,7}, {4,6}, {4,5}, {4,4}, {4,3}, {4,2}, {4,1}, {4,0}},
{{0,7}, {1,7}, {2,7}, {3,7}, {4,7}, {5,7}}, {{5,11}, {5,15}, {5,9}, {5,8}, {5,7}, {5,6}, {5,5}, {5,4}, {5,3}, {5,2}, {5,1}, {5,0}},
{{0,6}, {1,6}, {2,6}, {3,6}, {4,6}, {5,6}},
/* Right hand, matrix positions */
{{0,5}, {1,5}, {2,5}, {3,5}, {4,5}, {5,5}},
{{0,4}, {1,4}, {2,4}, {3,4}, {4,4}, {5,4}},
{{0,3}, {1,3}, {2,3}, {3,3}, {4,3}, {5,3}},
{{0,2}, {1,2}, {2,2}, {3,2}, {4,2}, {5,2}},
{{0,1}, {1,1}, {2,1}, {3,1}, {4,1}, {5,1}},
{{0,0}, {1,0}, {2,0}, {3,0}, {4,0}, {5,0}},
}; };
#endif #endif

@ -10,7 +10,6 @@
#define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n)) #define CPU_PRESCALE(n) (CLKPR = 0x80, CLKPR = (n))
#define CPU_16MHz 0x00 #define CPU_16MHz 0x00
// I2C aliases and register addresses (see "mcp23018.md")
#define I2C_ADDR 0b0100000 #define I2C_ADDR 0b0100000
#define I2C_ADDR_WRITE ( (I2C_ADDR<<1) | I2C_WRITE ) #define I2C_ADDR_WRITE ( (I2C_ADDR<<1) | I2C_WRITE )
#define I2C_ADDR_READ ( (I2C_ADDR<<1) | I2C_READ ) #define I2C_ADDR_READ ( (I2C_ADDR<<1) | I2C_READ )
@ -23,52 +22,46 @@
#define OLATA 0x14 // output latch register #define OLATA 0x14 // output latch register
#define OLATB 0x15 #define OLATB 0x15
extern uint8_t mcp23018_status; extern uint8_t expander_status;
extern uint8_t expander_input_pin_mask;
extern bool i2c_initialized;
void init_dactyl(void); void init_dactyl(void);
uint8_t init_mcp23018(void); void init_expander(void);
#define KEYMAP( \ #define KEYMAP( \
\ \
/* left hand, spatial positions */ \ /* left hand, spatial positions */ \
k00,k01,k02,k03,k04,k05, \ k00,k01,k02,k03,k04,k05, \
k10,k11,k12,k13,k14,k15, \ k10,k11,k12,k13,k14,k15, \
k20,k21,k22,k23,k24,k25, \ k20,k21,k22,k23,k24,k25, \
k30,k31,k32,k33,k34,k35, \ k30,k31,k32,k33,k34,k35, \
k40,k41,k42,k43,k44, \ k40,k41,k42,k43,k44, \
k55,k50, \ k55,k50, \
k54, \ k54, \
k53,k52,k51, \ k53,k52,k51, \
\ \
/* right hand, spatial positions */ \ /* right hand, spatial positions */ \
k06,k07,k08,k09,k0A,k0B, \ k06,k07,k08,k09,k0A,k0B, \
k16,k17,k18,k19,k1A,k1B, \ k16,k17,k18,k19,k1A,k1B, \
k26,k27,k28,k29,k2A,k2B, \ k26,k27,k28,k29,k2A,k2B, \
k36,k37,k38,k39,k3A,k3B, \ k36,k37,k38,k39,k3A,k3B, \
k47,k48,k49,k4A,k4B, \ k47,k48,k49,k4A,k4B, \
k5B,k56, \ k5B,k56, \
k57, \ k57, \
k5A,k59,k58 ) \ k5A,k59,k58 ) \
\ \
/* matrix positions */ \ /* matrix positions */ \
{ \ { \
{ k00, k10, k20, k30, k40, k50 }, \ { k00, k01, k02, k03, k04, k05, k06, k07, k08, k09, k0A, k0B }, \
{ k01, k11, k21, k31, k41, k51 }, \ { k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k1A, k1B }, \
{ k02, k12, k22, k32, k42, k52 }, \ { k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k2A, k2B }, \
{ k03, k13, k23, k33, k43, k53 }, \ { k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k3A, k3B }, \
{ k04, k14, k24, k34, k44, k54 }, \ { k40, k41, k42, k43, k44, KC_NO, KC_NO, k47, k48, k49, k4A, k4B }, \
{ k05, k15, k25, k35, KC_NO, k55 }, \ { k50, k51, k52, k53, k54, k55, k56, k57, k58, k59, k5A, k5B }, \
\
{ k06, k16, k26, k36, KC_NO, k56 }, \
{ k07, k17, k27, k37, k47, k57 }, \
{ k08, k18, k28, k38, k48, k58 }, \
{ k09, k19, k29, k39, k49, k59 }, \
{ k0A, k1A, k2A, k3A, k4A, k5A }, \
{ k0B, k1B, k2B, k3B, k4B, k5B } \
} }
#define LAYOUT_dactyl KEYMAP #define LAYOUT_dactyl KEYMAP
#endif #endif

@ -1,5 +1,4 @@
/* /*
Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com> Copyright 2013 Oleg Kostyuk <cub.uanic@gmail.com>
Copyright 2017 Erin Call <hello@erincall.com> Copyright 2017 Erin Call <hello@erincall.com>
@ -16,10 +15,6 @@ GNU General Public License for more details.
You should have received a copy of the GNU General Public License You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. along with this program. If not, see <http://www.gnu.org/licenses/>.
*/ */
/*
* scan matrix
*/
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
#include <avr/io.h> #include <avr/io.h>
@ -31,47 +26,66 @@ along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "matrix.h" #include "matrix.h"
#include "dactyl.h" #include "dactyl.h"
#include "i2cmaster.h" #include "i2cmaster.h"
#ifdef DEBUG_MATRIX_SCAN_RATE #include "timer.h"
#include "timer.h"
/* Set 0 if debouncing isn't needed */
#ifndef DEBOUNCING_DELAY
# define DEBOUNCING_DELAY 5
#endif #endif
/* #if (DEBOUNCING_DELAY > 0)
* This constant define not debouncing time in msecs, but amount of matrix static uint16_t debouncing_time;
* scan loops which should be made to get stable debounced results. static bool debouncing = false;
* #endif
* On the Dactyl, the matrix scan rate is relatively low, because
* communicating with the left hand's I/O expander is slower than simply #ifdef MATRIX_MASKED
* selecting local pins. extern const matrix_row_t matrix_mask[];
* Now it's only 317 scans/second, or about 3.15 msec/scan. #endif
* According to Cherry specs, debouncing time is 5 msec.
* #if (DIODE_DIRECTION == ROW2COL) || (DIODE_DIRECTION == COL2ROW)
* And so, there is no sense to have DEBOUNCE higher than 2. static const uint8_t onboard_row_pins[MATRIX_ROWS] = MATRIX_ONBOARD_ROW_PINS;
*/ static const uint8_t onboard_col_pins[MATRIX_COLS] = MATRIX_ONBOARD_COL_PINS;
static const bool col_expanded[MATRIX_COLS] = COL_EXPANDED;
#ifndef DEBOUNCE static const uint8_t expander_row_pins[MATRIX_ROWS] = MATRIX_EXPANDER_ROW_PINS;
# define DEBOUNCE 5 static const uint8_t expander_col_pins[MATRIX_COLS] = MATRIX_EXPANDER_COL_PINS;
#endif #endif
/* matrix state(1:on, 0:off) */ /* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix[MATRIX_ROWS];
// Debouncing: store for each key the number of scans until it's eligible to static matrix_row_t matrix_debouncing[MATRIX_ROWS];
// change. When scanning the matrix, ignore any changes in keys that have
// already changed in the last DEBOUNCE scans. #if (DIODE_DIRECTION == COL2ROW)
static uint8_t debounce_matrix[MATRIX_ROWS * MATRIX_COLS]; static void init_cols(void);
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
static matrix_row_t read_cols(uint8_t row); static void unselect_rows(void);
static void init_cols(void); static void select_row(uint8_t row);
static void unselect_rows(void); static void unselect_row(uint8_t row);
static void select_row(uint8_t row); #elif (DIODE_DIRECTION == ROW2COL)
static void init_rows(void);
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
static void unselect_cols(void);
static void select_col(uint8_t col);
static void unselect_col(uint8_t col);
#endif
static uint8_t mcp23018_reset_loop; static uint8_t expander_reset_loop;
uint8_t expander_status;
uint8_t expander_input_pin_mask;
bool i2c_initialized = false;
#ifdef DEBUG_MATRIX_SCAN_RATE #ifdef DEBUG_MATRIX_SCAN_RATE
uint32_t matrix_timer; uint32_t matrix_timer;
uint32_t matrix_scan_count; uint32_t matrix_scan_count;
#endif #endif
#define ROW_SHIFTER ((matrix_row_t)1)
#if (DIODE_DIRECTION == COL2ROW)
// bitmask to ensure the row state from the expander only applies to its columns
#define EXPANDER_MASK ((matrix_row_t)0b00111111)
#endif
__attribute__ ((weak)) __attribute__ ((weak))
void matrix_init_user(void) {} void matrix_init_user(void) {}
@ -103,20 +117,20 @@ uint8_t matrix_cols(void)
void matrix_init(void) void matrix_init(void)
{ {
// initialize row and col init_expander();
mcp23018_status = init_mcp23018();
#if (DIODE_DIRECTION == COL2ROW)
unselect_rows(); unselect_rows();
init_cols(); init_cols();
#elif (DIODE_DIRECTION == ROW2COL)
unselect_cols();
init_rows();
#endif
// initialize matrix state: all keys off // initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) { for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0; matrix[i] = 0;
for (uint8_t j=0; j < MATRIX_COLS; ++j) { matrix_debouncing[i] = 0;
debounce_matrix[i * MATRIX_COLS + j] = 0;
}
} }
#ifdef DEBUG_MATRIX_SCAN_RATE #ifdef DEBUG_MATRIX_SCAN_RATE
@ -125,59 +139,100 @@ void matrix_init(void)
#endif #endif
matrix_init_quantum(); matrix_init_quantum();
} }
void matrix_power_up(void) { void init_expander(void) {
mcp23018_status = init_mcp23018(); if (! i2c_initialized) {
i2c_init();
unselect_rows(); wait_us(1000000);
init_cols(); }
// initialize matrix state: all keys off if (! expander_input_pin_mask) {
for (uint8_t i=0; i < MATRIX_ROWS; i++) { #if (DIODE_DIRECTION == COL2ROW)
matrix[i] = 0; for (int col = 0; col < MATRIX_COLS; col++) {
if (col_expanded[col]) {
expander_input_pin_mask |= (1 << expander_col_pins[col]);
}
}
#elif (DIODE_DIRECTION == ROW2COL)
for (int row = 0; row < MATRIX_ROWS; row++) {
expander_input_pin_mask |= (1 << expander_row_pins[row]);
}
#endif
} }
#ifdef DEBUG_MATRIX_SCAN_RATE expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
matrix_timer = timer_read32(); expander_status = i2c_write(IODIRA); if (expander_status) goto out;
matrix_scan_count = 0;
/*
Pin direction and pull-up depends on both the diode direction
and on whether the column register is 0 ("A") or 1 ("B"):
+-------+---------------+---------------+
| | ROW2COL | COL2ROW |
+-------+---------------+---------------+
| Reg 0 | input, output | output, input |
+-------+---------------+---------------+
| Reg 1 | output, input | input, output |
+-------+---------------+---------------+
*/
#if (EXPANDER_COLUMN_REGISTER == 0)
# if (DIODE_DIRECTION == COL2ROW)
expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
expander_status = i2c_write(0); if (expander_status) goto out;
# elif (DIODE_DIRECTION == ROW2COL)
expander_status = i2c_write(0); if (expander_status) goto out;
expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
# endif
#elif (EXPANDER_COLUMN_REGISTER == 1)
# if (DIODE_DIRECTION == COL2ROW)
expander_status = i2c_write(0); if (expander_status) goto out;
expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
# elif (DIODE_DIRECTION == ROW2COL)
expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
expander_status = i2c_write(0); if (expander_status) goto out;
# endif
#endif #endif
}
// Returns a matrix_row_t whose bits are set if the corresponding key should be i2c_stop();
// eligible to change in this scan.
matrix_row_t debounce_mask(uint8_t row) { // set pull-up
matrix_row_t result = 0; // - unused : off : 0
for (uint8_t j=0; j < MATRIX_COLS; ++j) { // - input : on : 1
if (debounce_matrix[row * MATRIX_COLS + j]) { // - driving : off : 0
--debounce_matrix[row * MATRIX_COLS + j]; expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
} else { expander_status = i2c_write(GPPUA); if (expander_status) goto out;
result |= (1 << j); #if (EXPANDER_COLUMN_REGISTER == 0)
} # if (DIODE_DIRECTION == COL2ROW)
} expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
return result; expander_status = i2c_write(0); if (expander_status) goto out;
} # elif (DIODE_DIRECTION == ROW2COL)
expander_status = i2c_write(0); if (expander_status) goto out;
expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
# endif
#elif (EXPANDER_COLUMN_REGISTER == 1)
# if (DIODE_DIRECTION == COL2ROW)
expander_status = i2c_write(0); if (expander_status) goto out;
expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
# elif (DIODE_DIRECTION == ROW2COL)
expander_status = i2c_write(expander_input_pin_mask); if (expander_status) goto out;
expander_status = i2c_write(0); if (expander_status) goto out;
# endif
#endif
// Report changed keys in the given row. Resets the debounce countdowns out:
// corresponding to each set bit in 'change' to DEBOUNCE. i2c_stop();
void debounce_report(matrix_row_t change, uint8_t row) {
for (uint8_t i = 0; i < MATRIX_COLS; ++i) {
if (change & (1 << i)) {
debounce_matrix[row * MATRIX_COLS + i] = DEBOUNCE;
}
}
} }
uint8_t matrix_scan(void) uint8_t matrix_scan(void)
{ {
if (mcp23018_status) { // if there was an error if (expander_status) { // if there was an error
if (++mcp23018_reset_loop == 0) { if (++expander_reset_loop == 0) {
// since mcp23018_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans // since expander_reset_loop is 8 bit - we'll try to reset once in 255 matrix scans
// this will be approx bit more frequent than once per second // this will be approx bit more frequent than once per second
print("trying to reset mcp23018\n"); print("trying to reset expander\n");
mcp23018_status = init_mcp23018(); init_expander();
if (mcp23018_status) { if (expander_status) {
print("left side not responding\n"); print("left side not responding\n");
} else { } else {
print("left side attached\n"); print("left side attached\n");
@ -199,37 +254,71 @@ uint8_t matrix_scan(void)
} }
#endif #endif
for (uint8_t i = 0; i < MATRIX_ROWS; i++) { #if (DIODE_DIRECTION == COL2ROW)
select_row(i); for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
wait_us(30); // without this wait read unstable value. # if (DEBOUNCING_DELAY > 0)
matrix_row_t mask = debounce_mask(i); bool matrix_changed = read_cols_on_row(matrix_debouncing, current_row);
matrix_row_t cols = (read_cols(i) & mask) | (matrix[i] & ~mask);
debounce_report(cols ^ matrix[i], i); if (matrix_changed) {
matrix[i] = cols; debouncing = true;
debouncing_time = timer_read();
unselect_rows(); }
# else
read_cols_on_row(matrix, current_row);
# endif
} }
matrix_scan_quantum(); #elif (DIODE_DIRECTION == ROW2COL)
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
# if (DEBOUNCING_DELAY > 0)
bool matrix_changed = read_rows_on_col(matrix_debouncing, current_col);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
}
# else
read_rows_on_col(matrix, current_col);
# endif
}
#endif
# if (DEBOUNCING_DELAY > 0)
if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = matrix_debouncing[i];
}
debouncing = false;
}
# endif
matrix_scan_quantum();
return 1; return 1;
} }
bool matrix_is_modified(void) // deprecated and evidently not called. bool matrix_is_modified(void) // deprecated and evidently not called.
{ {
#if (DEBOUNCING_DELAY > 0)
if (debouncing) return false;
#endif
return true; return true;
} }
inline inline
bool matrix_is_on(uint8_t row, uint8_t col) bool matrix_is_on(uint8_t row, uint8_t col)
{ {
return (matrix[row] & ((matrix_row_t)1<<col)); return (matrix[row] & (ROW_SHIFTER << col));
} }
inline inline
matrix_row_t matrix_get_row(uint8_t row) matrix_row_t matrix_get_row(uint8_t row)
{ {
#ifdef MATRIX_MASKED
return matrix[row] & matrix_mask[row];
#else
return matrix[row]; return matrix[row];
#endif
} }
void matrix_print(void) void matrix_print(void)
@ -251,143 +340,203 @@ uint8_t matrix_key_count(void)
return count; return count;
} }
/* Column pin configuration #if (DIODE_DIRECTION == COL2ROW)
*
* Teensy
* col: 0 1 2 3 4 5
* pin: F0 F1 F4 F5 F6 F7
*
* MCP23018
* col: 0 1 2 3 4 5
* pin: B5 B4 B3 B2 B1 B0
*/
static void init_cols(void)
{
// init on mcp23018
// not needed, already done as part of init_mcp23018()
// init on teensy static void init_cols(void) {
// Input with pull-up(DDR:0, PORT:1) for (uint8_t x = 0; x < MATRIX_COLS; x++) {
DDRF &= ~(1<<7 | 1<<6 | 1<<5 | 1<<4 | 1<<1 | 1<<0); if (! col_expanded[x]) {
PORTF |= (1<<7 | 1<<6 | 1<<5 | 1<<4 | 1<<1 | 1<<0); uint8_t pin = onboard_col_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
} }
static matrix_row_t read_cols(uint8_t row) static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
{ // Store last value of row prior to reading
if (row < 6) { matrix_row_t last_row_value = current_matrix[current_row];
if (mcp23018_status) { // if there was an error
return 0; // Clear data in matrix row
} else { current_matrix[current_row] = 0;
uint8_t data = 0;
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; // Select row and wait for row selection to stabilize
mcp23018_status = i2c_write(GPIOB); if (mcp23018_status) goto out; select_row(current_row);
mcp23018_status = i2c_start(I2C_ADDR_READ); if (mcp23018_status) goto out; wait_us(30);
data = i2c_readNak();
data = ~data; // Read columns from expander, unless it's in an error state
if (! expander_status) {
expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
expander_status = i2c_write(GPIOA); if (expander_status) goto out;
expander_status = i2c_start(I2C_ADDR_READ); if (expander_status) goto out;
current_matrix[current_row] |= (~i2c_readNak()) & EXPANDER_MASK;
out: out:
i2c_stop(); i2c_stop();
return data; }
// Read columns from onboard pins
for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
if (! col_expanded[col_index]) {
uint8_t pin = onboard_col_pins[col_index];
uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
} }
} else {
// read from teensy
return
(PINF&(1<<0) ? 0 : (1<<0)) |
(PINF&(1<<1) ? 0 : (1<<1)) |
(PINF&(1<<4) ? 0 : (1<<2)) |
(PINF&(1<<5) ? 0 : (1<<3)) |
(PINF&(1<<6) ? 0 : (1<<4)) |
(PINF&(1<<7) ? 0 : (1<<5)) ;
} }
unselect_row(current_row);
return (last_row_value != current_matrix[current_row]);
} }
/* Row pin configuration static void select_row(uint8_t row) {
* // select on expander, unless it's in an error state
* Teensy if (! expander_status) {
* row: 6 7 8 9 10 11 // set active row low : 0
* pin: B1 B2 B3 D2 D3 C6 // set other rows hi-Z : 1
* expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
* MCP23018 expander_status = i2c_write(GPIOB); if (expander_status) goto out;
* row: 0 1 2 3 4 5 expander_status = i2c_write(0xFF & ~(1<<row)); if (expander_status) goto out;
* pin: A0 A1 A2 A3 A4 A5
*/
static void unselect_rows(void)
{
// unselect on mcp23018
if (mcp23018_status) { // if there was an error
// do nothing
} else {
// set all rows hi-Z : 1
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out;
mcp23018_status = i2c_write(0xFF); if (mcp23018_status) goto out;
out: out:
i2c_stop(); i2c_stop();
} }
// select on teensy
uint8_t pin = onboard_row_pins[row];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
static void unselect_row(uint8_t row)
{
// No need to explicitly unselect expander pins--their I/O state is
// set simultaneously, with a single bitmask sent to i2c_write. When
// select_row selects a single pin, it implicitly unselects all the
// other ones.
// unselect on teensy // unselect on teensy
// Hi-Z(DDR:0, PORT:0) to unselect uint8_t pin = onboard_row_pins[row];
DDRB &= ~(1<<1 | 1<<2 | 1<<3); _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // OUT
PORTB &= ~(1<<1 | 1<<2 | 1<<3); _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // LOW
DDRD &= ~(1<<2 | 1<<3); }
PORTD &= ~(1<<2 | 1<<3);
DDRC &= ~(1<<6); static void unselect_rows(void) {
PORTC &= ~(1<<6); for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
unselect_row(x);
}
} }
/* Row pin configuration #elif (DIODE_DIRECTION == ROW2COL)
*
* Teensy static void init_rows(void)
* row: 6 7 8 9 10 11
* pin: B1 B2 B3 D2 D3 C6
*
* MCP23018
* row: 0 1 2 3 4 5
* pin: A0 A1 A2 A3 A4 A5
*/
static void select_row(uint8_t row)
{ {
if (row < 6) { for (uint8_t x = 0; x < MATRIX_ROWS; x++) {
// select on mcp23018 uint8_t pin = onboard_row_pins[x];
if (mcp23018_status) { // if there was an error _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
{
bool matrix_changed = false;
uint8_t column_state = 0;
//select col and wait for selection to stabilize
select_col(current_col);
wait_us(30);
if (current_col < 6) {
// read rows from expander
if (expander_status) {
// it's already in an error state; nothing we can do
return false;
}
expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
expander_status = i2c_write(GPIOB); if (expander_status) goto out;
expander_status = i2c_start(I2C_ADDR_READ); if (expander_status) goto out;
column_state = i2c_readNak();
out:
i2c_stop();
column_state = ~column_state;
} else {
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
if ((_SFR_IO8(onboard_row_pins[current_row] >> 4) & _BV(onboard_row_pins[current_row] & 0xF)) == 0) {
column_state |= (1 << current_row);
}
}
}
for (uint8_t current_row = 0; current_row < MATRIX_ROWS; current_row++) {
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
if (column_state & (1 << current_row)) {
// key closed; set state bit in matrix
current_matrix[current_row] |= (ROW_SHIFTER << current_col);
} else {
// key open; clear state bit in matrix
current_matrix[current_row] &= ~(ROW_SHIFTER << current_col);
}
// Determine whether the matrix changed state
if ((last_row_value != current_matrix[current_row]) && !(matrix_changed))
{
matrix_changed = true;
}
}
unselect_col(current_col);
return matrix_changed;
}
static void select_col(uint8_t col)
{
if (col_expanded[col]) {
// select on expander
if (expander_status) { // if there was an error
// do nothing // do nothing
} else { } else {
// set active row low : 0 // set active col low : 0
// set other rows hi-Z : 1 // set other cols hi-Z : 1
mcp23018_status = i2c_start(I2C_ADDR_WRITE); if (mcp23018_status) goto out; expander_status = i2c_start(I2C_ADDR_WRITE); if (expander_status) goto out;
mcp23018_status = i2c_write(GPIOA); if (mcp23018_status) goto out; expander_status = i2c_write(GPIOA); if (expander_status) goto out;
mcp23018_status = i2c_write(0xFF & ~(1<<row)); if (mcp23018_status) goto out; expander_status = i2c_write(0xFF & ~(1<<col)); if (expander_status) goto out;
out: out:
i2c_stop(); i2c_stop();
} }
} else { } else {
// select on teensy // select on teensy
// Output low(DDR:1, PORT:0) to select uint8_t pin = onboard_col_pins[col];
switch (row) { _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
case 6: _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
DDRB |= (1<<1); }
PORTB &= ~(1<<1); }
break;
case 7: static void unselect_col(uint8_t col)
DDRB |= (1<<2); {
PORTB &= ~(1<<2); if (col_expanded[col]) {
break; // No need to explicitly unselect expander pins--their I/O state is
case 8: // set simultaneously, with a single bitmask sent to i2c_write. When
DDRB |= (1<<3); // select_col selects a single pin, it implicitly unselects all the
PORTB &= ~(1<<3); // other ones.
break; } else {
case 9: // unselect on teensy
DDRD |= (1<<2); uint8_t pin = onboard_col_pins[col];
PORTD &= ~(1<<3); _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
break; _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
case 10:
DDRD |= (1<<3);
PORTD &= ~(1<<3);
break;
case 11:
DDRC |= (1<<6);
PORTC &= ~(1<<6);
break;
}
} }
} }
static void unselect_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
unselect_col(x);
}
}
#endif

Loading…
Cancel
Save