#include <avr/eeprom.h> #include <avr/interrupt.h> #include <util/delay.h> #include "progmem.h" #include "timer.h" #include "rgblight.h" #include "debug.h" const uint8_t DIM_CURVE[] PROGMEM = { 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 20, 20, 20, 21, 21, 22, 22, 22, 23, 23, 24, 24, 25, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 36, 37, 38, 38, 39, 40, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 78, 79, 81, 82, 83, 85, 86, 88, 90, 91, 93, 94, 96, 98, 99, 101, 103, 105, 107, 109, 110, 112, 114, 116, 118, 121, 123, 125, 127, 129, 132, 134, 136, 139, 141, 144, 146, 149, 151, 154, 157, 159, 162, 165, 168, 171, 174, 177, 180, 183, 186, 190, 193, 196, 200, 203, 207, 211, 214, 218, 222, 226, 230, 234, 238, 242, 248, 255, }; const uint8_t RGBLED_BREATHING_TABLE[] PROGMEM = {0,0,0,0,1,1,1,2,2,3,4,5,5,6,7,9,10,11,12,14,15,17,18,20,21,23,25,27,29,31,33,35,37,40,42,44,47,49,52,54,57,59,62,65,67,70,73,76,79,82,85,88,90,93,97,100,103,106,109,112,115,118,121,124,127,131,134,137,140,143,146,149,152,155,158,162,165,167,170,173,176,179,182,185,188,190,193,196,198,201,203,206,208,211,213,215,218,220,222,224,226,228,230,232,234,235,237,238,240,241,243,244,245,246,248,249,250,250,251,252,253,253,254,254,254,255,255,255,255,255,255,255,254,254,254,253,253,252,251,250,250,249,248,246,245,244,243,241,240,238,237,235,234,232,230,228,226,224,222,220,218,215,213,211,208,206,203,201,198,196,193,190,188,185,182,179,176,173,170,167,165,162,158,155,152,149,146,143,140,137,134,131,128,124,121,118,115,112,109,106,103,100,97,93,90,88,85,82,79,76,73,70,67,65,62,59,57,54,52,49,47,44,42,40,37,35,33,31,29,27,25,23,21,20,18,17,15,14,12,11,10,9,7,6,5,5,4,3,2,2,1,1,1,0,0,0}; const uint8_t RGBLED_BREATHING_INTERVALS[] PROGMEM = {30, 20, 10, 5}; const uint8_t RGBLED_RAINBOW_MOOD_INTERVALS[] PROGMEM = {120, 60, 30}; const uint8_t RGBLED_RAINBOW_SWIRL_INTERVALS[] PROGMEM = {100, 50, 20}; const uint8_t RGBLED_SNAKE_INTERVALS[] PROGMEM = {100, 50, 20}; const uint8_t RGBLED_KNIGHT_INTERVALS[] PROGMEM = {100, 50, 20}; rgblight_config_t rgblight_config; rgblight_config_t inmem_config; struct cRGB led[RGBLED_NUM]; uint8_t rgblight_inited = 0; void sethsv(uint16_t hue, uint8_t sat, uint8_t val, struct cRGB *led1) { /* convert hue, saturation and brightness ( HSB/HSV ) to RGB The DIM_CURVE is used only on brightness/value and on saturation (inverted). This looks the most natural. */ uint8_t r, g, b; val = pgm_read_byte(&DIM_CURVE[val]); sat = 255 - pgm_read_byte(&DIM_CURVE[255 - sat]); uint8_t base; if (sat == 0) { // Acromatic color (gray). Hue doesn't mind. r = val; g = val; b = val; } else { base = ((255 - sat) * val) >> 8; switch (hue / 60) { case 0: r = val; g = (((val - base)*hue) / 60) + base; b = base; break; case 1: r = (((val - base)*(60 - (hue % 60))) / 60) + base; g = val; b = base; break; case 2: r = base; g = val; b = (((val - base)*(hue % 60)) / 60) + base; break; case 3: r = base; g = (((val - base)*(60 - (hue % 60))) / 60) + base; b = val; break; case 4: r = (((val - base)*(hue % 60)) / 60) + base; g = base; b = val; break; case 5: r = val; g = base; b = (((val - base)*(60 - (hue % 60))) / 60) + base; break; } } setrgb(r,g,b, led1); } void setrgb(uint8_t r, uint8_t g, uint8_t b, struct cRGB *led1) { (*led1).r = r; (*led1).g = g; (*led1).b = b; } uint32_t eeconfig_read_rgblight(void) { return eeprom_read_dword(EECONFIG_RGBLIGHT); } void eeconfig_write_rgblight(uint32_t val) { eeprom_write_dword(EECONFIG_RGBLIGHT, val); } void eeconfig_write_rgblight_default(void) { dprintf("eeconfig_write_rgblight_default\n"); rgblight_config.enable = 1; rgblight_config.mode = 1; rgblight_config.hue = 200; rgblight_config.sat = 204; rgblight_config.val = 204; eeconfig_write_rgblight(rgblight_config.raw); } void eeconfig_debug_rgblight(void) { dprintf("rgblight_config eprom\n"); dprintf("rgblight_config.enable = %d\n", rgblight_config.enable); dprintf("rghlight_config.mode = %d\n", rgblight_config.mode); dprintf("rgblight_config.hue = %d\n", rgblight_config.hue); dprintf("rgblight_config.sat = %d\n", rgblight_config.sat); dprintf("rgblight_config.val = %d\n", rgblight_config.val); } void rgblight_init(void) { debug_enable = 1; // Debug ON! dprintf("rgblight_init called.\n"); rgblight_inited = 1; dprintf("rgblight_init start!\n"); if (!eeconfig_is_enabled()) { dprintf("rgblight_init eeconfig is not enabled.\n"); eeconfig_init(); eeconfig_write_rgblight_default(); } rgblight_config.raw = eeconfig_read_rgblight(); if (!rgblight_config.mode) { dprintf("rgblight_init rgblight_config.mode = 0. Write default values to EEPROM.\n"); eeconfig_write_rgblight_default(); rgblight_config.raw = eeconfig_read_rgblight(); } eeconfig_debug_rgblight(); // display current eeprom values rgblight_timer_init(); // setup the timer if (rgblight_config.enable) { rgblight_mode(rgblight_config.mode); } } void rgblight_increase(void) { uint8_t mode; if (rgblight_config.mode < RGBLIGHT_MODES) { mode = rgblight_config.mode + 1; } rgblight_mode(mode); } void rgblight_decrease(void) { uint8_t mode; if (rgblight_config.mode > 1) { //mode will never < 1, if mode is less than 1, eeprom need to be initialized. mode = rgblight_config.mode-1; } rgblight_mode(mode); } void rgblight_step(void) { uint8_t mode; mode = rgblight_config.mode + 1; if (mode > RGBLIGHT_MODES) { mode = 1; } rgblight_mode(mode); } void rgblight_mode(uint8_t mode) { if (!rgblight_config.enable) { return; } if (mode<1) { rgblight_config.mode = 1; } else if (mode > RGBLIGHT_MODES) { rgblight_config.mode = RGBLIGHT_MODES; } else { rgblight_config.mode = mode; } eeconfig_write_rgblight(rgblight_config.raw); dprintf("rgblight mode: %u\n", rgblight_config.mode); if (rgblight_config.mode == 1) { rgblight_timer_disable(); } else if (rgblight_config.mode >=2 && rgblight_config.mode <=23) { // MODE 2-5, breathing // MODE 6-8, rainbow mood // MODE 9-14, rainbow swirl // MODE 15-20, snake // MODE 21-23, knight rgblight_timer_enable(); } rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val); } void rgblight_toggle(void) { rgblight_config.enable ^= 1; eeconfig_write_rgblight(rgblight_config.raw); dprintf("rgblight toggle: rgblight_config.enable = %u\n", rgblight_config.enable); if (rgblight_config.enable) { rgblight_mode(rgblight_config.mode); } else { rgblight_timer_disable(); _delay_ms(50); rgblight_set(); } } void rgblight_increase_hue(void){ uint16_t hue; hue = (rgblight_config.hue+RGBLIGHT_HUE_STEP) % 360; rgblight_sethsv(hue, rgblight_config.sat, rgblight_config.val); } void rgblight_decrease_hue(void){ uint16_t hue; if (rgblight_config.hue-RGBLIGHT_HUE_STEP <0 ) { hue = (rgblight_config.hue+360-RGBLIGHT_HUE_STEP) % 360; } else { hue = (rgblight_config.hue-RGBLIGHT_HUE_STEP) % 360; } rgblight_sethsv(hue, rgblight_config.sat, rgblight_config.val); } void rgblight_increase_sat(void) { uint8_t sat; if (rgblight_config.sat + RGBLIGHT_SAT_STEP > 255) { sat = 255; } else { sat = rgblight_config.sat+RGBLIGHT_SAT_STEP; } rgblight_sethsv(rgblight_config.hue, sat, rgblight_config.val); } void rgblight_decrease_sat(void){ uint8_t sat; if (rgblight_config.sat - RGBLIGHT_SAT_STEP < 0) { sat = 0; } else { sat = rgblight_config.sat-RGBLIGHT_SAT_STEP; } rgblight_sethsv(rgblight_config.hue, sat, rgblight_config.val); } void rgblight_increase_val(void){ uint8_t val; if (rgblight_config.val + RGBLIGHT_VAL_STEP > 255) { val = 255; } else { val = rgblight_config.val+RGBLIGHT_VAL_STEP; } rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, val); } void rgblight_decrease_val(void) { uint8_t val; if (rgblight_config.val - RGBLIGHT_VAL_STEP < 0) { val = 0; } else { val = rgblight_config.val-RGBLIGHT_VAL_STEP; } rgblight_sethsv(rgblight_config.hue, rgblight_config.sat, val); } void rgblight_sethsv_noeeprom(uint16_t hue, uint8_t sat, uint8_t val){ inmem_config.raw = rgblight_config.raw; if (rgblight_config.enable) { struct cRGB tmp_led; sethsv(hue, sat, val, &tmp_led); inmem_config.hue = hue; inmem_config.sat = sat; inmem_config.val = val; // dprintf("rgblight set hue [MEMORY]: %u,%u,%u\n", inmem_config.hue, inmem_config.sat, inmem_config.val); rgblight_setrgb(tmp_led.r, tmp_led.g, tmp_led.b); } } void rgblight_sethsv(uint16_t hue, uint8_t sat, uint8_t val){ if (rgblight_config.enable) { if (rgblight_config.mode == 1) { // same static color rgblight_sethsv_noeeprom(hue, sat, val); } else { // all LEDs in same color if (rgblight_config.mode >= 2 && rgblight_config.mode <= 5) { // breathing mode, ignore the change of val, use in memory value instead val = rgblight_config.val; } else if (rgblight_config.mode >= 6 && rgblight_config.mode <= 14) { // rainbow mood and rainbow swirl, ignore the change of hue hue = rgblight_config.hue; } } rgblight_config.hue = hue; rgblight_config.sat = sat; rgblight_config.val = val; eeconfig_write_rgblight(rgblight_config.raw); dprintf("rgblight set hsv [EEPROM]: %u,%u,%u\n", rgblight_config.hue, rgblight_config.sat, rgblight_config.val); } } void rgblight_setrgb(uint8_t r, uint8_t g, uint8_t b){ // dprintf("rgblight set rgb: %u,%u,%u\n", r,g,b); for (uint8_t i=0;i<RGBLED_NUM;i++) { led[i].r = r; led[i].g = g; led[i].b = b; } rgblight_set(); } void rgblight_set(void) { if (rgblight_config.enable) { ws2812_setleds(led, RGBLED_NUM); } else { for (uint8_t i=0;i<RGBLED_NUM;i++) { led[i].r = 0; led[i].g = 0; led[i].b = 0; } ws2812_setleds(led, RGBLED_NUM); } } // Animation timer -- AVR Timer3 void rgblight_timer_init(void) { static uint8_t rgblight_timer_is_init = 0; if (rgblight_timer_is_init) { return; } rgblight_timer_is_init = 1; /* Timer 3 setup */ TCCR3B = _BV(WGM32) //CTC mode OCR3A as TOP | _BV(CS30); //Clock selelct: clk/1 /* Set TOP value */ uint8_t sreg = SREG; cli(); OCR3AH = (RGBLED_TIMER_TOP>>8)&0xff; OCR3AL = RGBLED_TIMER_TOP&0xff; SREG = sreg; } void rgblight_timer_enable(void) { TIMSK3 |= _BV(OCIE3A); dprintf("TIMER3 enabled.\n"); } void rgblight_timer_disable(void) { TIMSK3 &= ~_BV(OCIE3A); dprintf("TIMER3 disabled.\n"); } void rgblight_timer_toggle(void) { TIMSK3 ^= _BV(OCIE3A); dprintf("TIMER3 toggled.\n"); } ISR(TIMER3_COMPA_vect) { // Mode = 1, static light, do nothing here if (rgblight_config.mode>=2 && rgblight_config.mode<=5) { // mode = 2 to 5, breathing mode rgblight_effect_breathing(rgblight_config.mode-2); } else if (rgblight_config.mode>=6 && rgblight_config.mode<=8) { rgblight_effect_rainbow_mood(rgblight_config.mode-6); } else if (rgblight_config.mode>=9 && rgblight_config.mode<=14) { rgblight_effect_rainbow_swirl(rgblight_config.mode-9); } else if (rgblight_config.mode>=15 && rgblight_config.mode<=20) { rgblight_effect_snake(rgblight_config.mode-15); } else if (rgblight_config.mode>=21 && rgblight_config.mode<=23) { rgblight_effect_knight(rgblight_config.mode-21); } } // effects void rgblight_effect_breathing(uint8_t interval) { static uint8_t pos = 0; static uint16_t last_timer = 0; if (timer_elapsed(last_timer)<pgm_read_byte(&RGBLED_BREATHING_INTERVALS[interval])) return; last_timer = timer_read(); rgblight_sethsv_noeeprom(rgblight_config.hue, rgblight_config.sat, pgm_read_byte(&RGBLED_BREATHING_TABLE[pos])); pos = (pos+1) % 256; } void rgblight_effect_rainbow_mood(uint8_t interval) { static uint16_t current_hue=0; static uint16_t last_timer = 0; if (timer_elapsed(last_timer)<pgm_read_byte(&RGBLED_RAINBOW_MOOD_INTERVALS[interval])) return; last_timer = timer_read(); rgblight_sethsv_noeeprom(current_hue, rgblight_config.sat, rgblight_config.val); current_hue = (current_hue+1) % 360; } void rgblight_effect_rainbow_swirl(uint8_t interval) { static uint16_t current_hue=0; static uint16_t last_timer = 0; uint16_t hue; uint8_t i; if (timer_elapsed(last_timer)<pgm_read_byte(&RGBLED_RAINBOW_MOOD_INTERVALS[interval/2])) return; last_timer = timer_read(); for (i=0; i<RGBLED_NUM; i++) { hue = (360/RGBLED_NUM*i+current_hue)%360; sethsv(hue, rgblight_config.sat, rgblight_config.val, &led[i]); } rgblight_set(); if (interval % 2) { current_hue = (current_hue+1) % 360; } else { if (current_hue -1 < 0) { current_hue = 359; } else { current_hue = current_hue - 1; } } } void rgblight_effect_snake(uint8_t interval) { static uint8_t pos=0; static uint16_t last_timer = 0; uint8_t i,j; int8_t k; int8_t increament = 1; if (interval%2) increament = -1; if (timer_elapsed(last_timer)<pgm_read_byte(&RGBLED_SNAKE_INTERVALS[interval/2])) return; last_timer = timer_read(); for (i=0;i<RGBLED_NUM;i++) { led[i].r=0; led[i].g=0; led[i].b=0; for (j=0;j<RGBLIGHT_EFFECT_SNAKE_LENGTH;j++) { k = pos+j*increament; if (k<0) k = k+RGBLED_NUM; if (i==k) { sethsv(rgblight_config.hue, rgblight_config.sat, (uint8_t)(rgblight_config.val*(RGBLIGHT_EFFECT_SNAKE_LENGTH-j)/RGBLIGHT_EFFECT_SNAKE_LENGTH), &led[i]); } } } rgblight_set(); if (increament == 1) { if (pos - 1 < 0) { pos = RGBLED_NUM-1; } else { pos -= 1; } } else { pos = (pos+1)%RGBLED_NUM; } } void rgblight_effect_knight(uint8_t interval) { static int8_t pos=0; static uint16_t last_timer = 0; uint8_t i,j,cur; int8_t k; struct cRGB preled[RGBLED_NUM]; static int8_t increament = -1; if (timer_elapsed(last_timer)<pgm_read_byte(&RGBLED_KNIGHT_INTERVALS[interval])) return; last_timer = timer_read(); for (i=0;i<RGBLED_NUM;i++) { preled[i].r=0; preled[i].g=0; preled[i].b=0; for (j=0;j<RGBLIGHT_EFFECT_KNIGHT_LENGTH;j++) { k = pos+j*increament; if (k<0) k = 0; if (k>=RGBLED_NUM) k=RGBLED_NUM-1; if (i==k) { sethsv(rgblight_config.hue, rgblight_config.sat, rgblight_config.val, &preled[i]); } } } if (RGBLIGHT_EFFECT_KNIGHT_OFFSET) { for (i=0;i<RGBLED_NUM;i++) { cur = (i+RGBLIGHT_EFFECT_KNIGHT_OFFSET) % RGBLED_NUM; led[i].r = preled[cur].r; led[i].g = preled[cur].g; led[i].b = preled[cur].b; } } rgblight_set(); if (increament == 1) { if (pos - 1 < 0 - RGBLIGHT_EFFECT_KNIGHT_LENGTH) { pos = 0- RGBLIGHT_EFFECT_KNIGHT_LENGTH; increament = -1; } else { pos -= 1; } } else { if (pos+1>RGBLED_NUM+RGBLIGHT_EFFECT_KNIGHT_LENGTH) { pos = RGBLED_NUM+RGBLIGHT_EFFECT_KNIGHT_LENGTH-1; increament = 1; } else { pos += 1; } } }