commit
78f8fe361f
@ -0,0 +1,805 @@
|
||||
#include "adafruit_ble.h"
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <alloca.h>
|
||||
#include <util/delay.h>
|
||||
#include <util/atomic.h>
|
||||
#include "debug.h"
|
||||
#include "pincontrol.h"
|
||||
#include "timer.h"
|
||||
#include "action_util.h"
|
||||
#include "ringbuffer.hpp"
|
||||
#include <string.h>
|
||||
|
||||
// These are the pin assignments for the 32u4 boards.
|
||||
// You may define them to something else in your config.h
|
||||
// if yours is wired up differently.
|
||||
#ifndef AdafruitBleResetPin
|
||||
#define AdafruitBleResetPin D4
|
||||
#endif
|
||||
|
||||
#ifndef AdafruitBleCSPin
|
||||
#define AdafruitBleCSPin B4
|
||||
#endif
|
||||
|
||||
#ifndef AdafruitBleIRQPin
|
||||
#define AdafruitBleIRQPin E6
|
||||
#endif
|
||||
|
||||
|
||||
#define SAMPLE_BATTERY
|
||||
#define ConnectionUpdateInterval 1000 /* milliseconds */
|
||||
|
||||
static struct {
|
||||
bool is_connected;
|
||||
bool initialized;
|
||||
bool configured;
|
||||
|
||||
#define ProbedEvents 1
|
||||
#define UsingEvents 2
|
||||
bool event_flags;
|
||||
|
||||
#ifdef SAMPLE_BATTERY
|
||||
uint16_t last_battery_update;
|
||||
uint32_t vbat;
|
||||
#endif
|
||||
uint16_t last_connection_update;
|
||||
} state;
|
||||
|
||||
// Commands are encoded using SDEP and sent via SPI
|
||||
// https://github.com/adafruit/Adafruit_BluefruitLE_nRF51/blob/master/SDEP.md
|
||||
|
||||
#define SdepMaxPayload 16
|
||||
struct sdep_msg {
|
||||
uint8_t type;
|
||||
uint8_t cmd_low;
|
||||
uint8_t cmd_high;
|
||||
struct __attribute__((packed)) {
|
||||
uint8_t len:7;
|
||||
uint8_t more:1;
|
||||
};
|
||||
uint8_t payload[SdepMaxPayload];
|
||||
} __attribute__((packed));
|
||||
|
||||
// The recv latency is relatively high, so when we're hammering keys quickly,
|
||||
// we want to avoid waiting for the responses in the matrix loop. We maintain
|
||||
// a short queue for that. Since there is quite a lot of space overhead for
|
||||
// the AT command representation wrapped up in SDEP, we queue the minimal
|
||||
// information here.
|
||||
|
||||
enum queue_type {
|
||||
QTKeyReport, // 1-byte modifier + 6-byte key report
|
||||
QTConsumer, // 16-bit key code
|
||||
#ifdef MOUSE_ENABLE
|
||||
QTMouseMove, // 4-byte mouse report
|
||||
#endif
|
||||
};
|
||||
|
||||
struct queue_item {
|
||||
enum queue_type queue_type;
|
||||
uint16_t added;
|
||||
union __attribute__((packed)) {
|
||||
struct __attribute__((packed)) {
|
||||
uint8_t modifier;
|
||||
uint8_t keys[6];
|
||||
} key;
|
||||
|
||||
uint16_t consumer;
|
||||
struct __attribute__((packed)) {
|
||||
uint8_t x, y, scroll, pan;
|
||||
} mousemove;
|
||||
};
|
||||
};
|
||||
|
||||
// Items that we wish to send
|
||||
static RingBuffer<queue_item, 40> send_buf;
|
||||
// Pending response; while pending, we can't send any more requests.
|
||||
// This records the time at which we sent the command for which we
|
||||
// are expecting a response.
|
||||
static RingBuffer<uint16_t, 2> resp_buf;
|
||||
|
||||
static bool process_queue_item(struct queue_item *item, uint16_t timeout);
|
||||
|
||||
enum sdep_type {
|
||||
SdepCommand = 0x10,
|
||||
SdepResponse = 0x20,
|
||||
SdepAlert = 0x40,
|
||||
SdepError = 0x80,
|
||||
SdepSlaveNotReady = 0xfe, // Try again later
|
||||
SdepSlaveOverflow = 0xff, // You read more data than is available
|
||||
};
|
||||
|
||||
enum ble_cmd {
|
||||
BleInitialize = 0xbeef,
|
||||
BleAtWrapper = 0x0a00,
|
||||
BleUartTx = 0x0a01,
|
||||
BleUartRx = 0x0a02,
|
||||
};
|
||||
|
||||
enum ble_system_event_bits {
|
||||
BleSystemConnected = 0,
|
||||
BleSystemDisconnected = 1,
|
||||
BleSystemUartRx = 8,
|
||||
BleSystemMidiRx = 10,
|
||||
};
|
||||
|
||||
// The SDEP.md file says 2MHz but the web page and the sample driver
|
||||
// both use 4MHz
|
||||
#define SpiBusSpeed 4000000
|
||||
|
||||
#define SdepTimeout 150 /* milliseconds */
|
||||
#define SdepShortTimeout 10 /* milliseconds */
|
||||
#define SdepBackOff 25 /* microseconds */
|
||||
#define BatteryUpdateInterval 10000 /* milliseconds */
|
||||
|
||||
static bool at_command(const char *cmd, char *resp, uint16_t resplen,
|
||||
bool verbose, uint16_t timeout = SdepTimeout);
|
||||
static bool at_command_P(const char *cmd, char *resp, uint16_t resplen,
|
||||
bool verbose = false);
|
||||
|
||||
struct SPI_Settings {
|
||||
uint8_t spcr, spsr;
|
||||
};
|
||||
|
||||
static struct SPI_Settings spi;
|
||||
|
||||
// Initialize 4Mhz MSBFIRST MODE0
|
||||
void SPI_init(struct SPI_Settings *spi) {
|
||||
spi->spcr = _BV(SPE) | _BV(MSTR);
|
||||
spi->spsr = _BV(SPI2X);
|
||||
|
||||
static_assert(SpiBusSpeed == F_CPU / 2, "hard coded at 4Mhz");
|
||||
|
||||
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
||||
// Ensure that SS is OUTPUT High
|
||||
digitalWrite(B0, PinLevelHigh);
|
||||
pinMode(B0, PinDirectionOutput);
|
||||
|
||||
SPCR |= _BV(MSTR);
|
||||
SPCR |= _BV(SPE);
|
||||
pinMode(B1 /* SCK */, PinDirectionOutput);
|
||||
pinMode(B2 /* MOSI */, PinDirectionOutput);
|
||||
}
|
||||
}
|
||||
|
||||
static inline void SPI_begin(struct SPI_Settings*spi) {
|
||||
SPCR = spi->spcr;
|
||||
SPSR = spi->spsr;
|
||||
}
|
||||
|
||||
static inline uint8_t SPI_TransferByte(uint8_t data) {
|
||||
SPDR = data;
|
||||
asm volatile("nop");
|
||||
while (!(SPSR & _BV(SPIF))) {
|
||||
; // wait
|
||||
}
|
||||
return SPDR;
|
||||
}
|
||||
|
||||
static inline void spi_send_bytes(const uint8_t *buf, uint8_t len) {
|
||||
if (len == 0) return;
|
||||
const uint8_t *end = buf + len;
|
||||
while (buf < end) {
|
||||
SPDR = *buf;
|
||||
while (!(SPSR & _BV(SPIF))) {
|
||||
; // wait
|
||||
}
|
||||
++buf;
|
||||
}
|
||||
}
|
||||
|
||||
static inline uint16_t spi_read_byte(void) {
|
||||
return SPI_TransferByte(0x00 /* dummy */);
|
||||
}
|
||||
|
||||
static inline void spi_recv_bytes(uint8_t *buf, uint8_t len) {
|
||||
const uint8_t *end = buf + len;
|
||||
if (len == 0) return;
|
||||
while (buf < end) {
|
||||
SPDR = 0; // write a dummy to initiate read
|
||||
while (!(SPSR & _BV(SPIF))) {
|
||||
; // wait
|
||||
}
|
||||
*buf = SPDR;
|
||||
++buf;
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
static void dump_pkt(const struct sdep_msg *msg) {
|
||||
print("pkt: type=");
|
||||
print_hex8(msg->type);
|
||||
print(" cmd=");
|
||||
print_hex8(msg->cmd_high);
|
||||
print_hex8(msg->cmd_low);
|
||||
print(" len=");
|
||||
print_hex8(msg->len);
|
||||
print(" more=");
|
||||
print_hex8(msg->more);
|
||||
print("\n");
|
||||
}
|
||||
#endif
|
||||
|
||||
// Send a single SDEP packet
|
||||
static bool sdep_send_pkt(const struct sdep_msg *msg, uint16_t timeout) {
|
||||
SPI_begin(&spi);
|
||||
|
||||
digitalWrite(AdafruitBleCSPin, PinLevelLow);
|
||||
uint16_t timerStart = timer_read();
|
||||
bool success = false;
|
||||
bool ready = false;
|
||||
|
||||
do {
|
||||
ready = SPI_TransferByte(msg->type) != SdepSlaveNotReady;
|
||||
if (ready) {
|
||||
break;
|
||||
}
|
||||
|
||||
// Release it and let it initialize
|
||||
digitalWrite(AdafruitBleCSPin, PinLevelHigh);
|
||||
_delay_us(SdepBackOff);
|
||||
digitalWrite(AdafruitBleCSPin, PinLevelLow);
|
||||
} while (timer_elapsed(timerStart) < timeout);
|
||||
|
||||
if (ready) {
|
||||
// Slave is ready; send the rest of the packet
|
||||
spi_send_bytes(&msg->cmd_low,
|
||||
sizeof(*msg) - (1 + sizeof(msg->payload)) + msg->len);
|
||||
success = true;
|
||||
}
|
||||
|
||||
digitalWrite(AdafruitBleCSPin, PinLevelHigh);
|
||||
|
||||
return success;
|
||||
}
|
||||
|
||||
static inline void sdep_build_pkt(struct sdep_msg *msg, uint16_t command,
|
||||
const uint8_t *payload, uint8_t len,
|
||||
bool moredata) {
|
||||
msg->type = SdepCommand;
|
||||
msg->cmd_low = command & 0xff;
|
||||
msg->cmd_high = command >> 8;
|
||||
msg->len = len;
|
||||
msg->more = (moredata && len == SdepMaxPayload) ? 1 : 0;
|
||||
|
||||
static_assert(sizeof(*msg) == 20, "msg is correctly packed");
|
||||
|
||||
memcpy(msg->payload, payload, len);
|
||||
}
|
||||
|
||||
// Read a single SDEP packet
|
||||
static bool sdep_recv_pkt(struct sdep_msg *msg, uint16_t timeout) {
|
||||
bool success = false;
|
||||
uint16_t timerStart = timer_read();
|
||||
bool ready = false;
|
||||
|
||||
do {
|
||||
ready = digitalRead(AdafruitBleIRQPin);
|
||||
if (ready) {
|
||||
break;
|
||||
}
|
||||
_delay_us(1);
|
||||
} while (timer_elapsed(timerStart) < timeout);
|
||||
|
||||
if (ready) {
|
||||
SPI_begin(&spi);
|
||||
|
||||
digitalWrite(AdafruitBleCSPin, PinLevelLow);
|
||||
|
||||
do {
|
||||
// Read the command type, waiting for the data to be ready
|
||||
msg->type = spi_read_byte();
|
||||
if (msg->type == SdepSlaveNotReady || msg->type == SdepSlaveOverflow) {
|
||||
// Release it and let it initialize
|
||||
digitalWrite(AdafruitBleCSPin, PinLevelHigh);
|
||||
_delay_us(SdepBackOff);
|
||||
digitalWrite(AdafruitBleCSPin, PinLevelLow);
|
||||
continue;
|
||||
}
|
||||
|
||||
// Read the rest of the header
|
||||
spi_recv_bytes(&msg->cmd_low, sizeof(*msg) - (1 + sizeof(msg->payload)));
|
||||
|
||||
// and get the payload if there is any
|
||||
if (msg->len <= SdepMaxPayload) {
|
||||
spi_recv_bytes(msg->payload, msg->len);
|
||||
}
|
||||
success = true;
|
||||
break;
|
||||
} while (timer_elapsed(timerStart) < timeout);
|
||||
|
||||
digitalWrite(AdafruitBleCSPin, PinLevelHigh);
|
||||
}
|
||||
return success;
|
||||
}
|
||||
|
||||
static void resp_buf_read_one(bool greedy) {
|
||||
uint16_t last_send;
|
||||
if (!resp_buf.peek(last_send)) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (digitalRead(AdafruitBleIRQPin)) {
|
||||
struct sdep_msg msg;
|
||||
|
||||
again:
|
||||
if (sdep_recv_pkt(&msg, SdepTimeout)) {
|
||||
if (!msg.more) {
|
||||
// We got it; consume this entry
|
||||
resp_buf.get(last_send);
|
||||
dprintf("recv latency %dms\n", TIMER_DIFF_16(timer_read(), last_send));
|
||||
}
|
||||
|
||||
if (greedy && resp_buf.peek(last_send) && digitalRead(AdafruitBleIRQPin)) {
|
||||
goto again;
|
||||
}
|
||||
}
|
||||
|
||||
} else if (timer_elapsed(last_send) > SdepTimeout * 2) {
|
||||
dprintf("waiting_for_result: timeout, resp_buf size %d\n",
|
||||
(int)resp_buf.size());
|
||||
|
||||
// Timed out: consume this entry
|
||||
resp_buf.get(last_send);
|
||||
}
|
||||
}
|
||||
|
||||
static void send_buf_send_one(uint16_t timeout = SdepTimeout) {
|
||||
struct queue_item item;
|
||||
|
||||
// Don't send anything more until we get an ACK
|
||||
if (!resp_buf.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (!send_buf.peek(item)) {
|
||||
return;
|
||||
}
|
||||
if (process_queue_item(&item, timeout)) {
|
||||
// commit that peek
|
||||
send_buf.get(item);
|
||||
dprintf("send_buf_send_one: have %d remaining\n", (int)send_buf.size());
|
||||
} else {
|
||||
dprint("failed to send, will retry\n");
|
||||
_delay_ms(SdepTimeout);
|
||||
resp_buf_read_one(true);
|
||||
}
|
||||
}
|
||||
|
||||
static void resp_buf_wait(const char *cmd) {
|
||||
bool didPrint = false;
|
||||
while (!resp_buf.empty()) {
|
||||
if (!didPrint) {
|
||||
dprintf("wait on buf for %s\n", cmd);
|
||||
didPrint = true;
|
||||
}
|
||||
resp_buf_read_one(true);
|
||||
}
|
||||
}
|
||||
|
||||
static bool ble_init(void) {
|
||||
state.initialized = false;
|
||||
state.configured = false;
|
||||
state.is_connected = false;
|
||||
|
||||
pinMode(AdafruitBleIRQPin, PinDirectionInput);
|
||||
pinMode(AdafruitBleCSPin, PinDirectionOutput);
|
||||
digitalWrite(AdafruitBleCSPin, PinLevelHigh);
|
||||
|
||||
SPI_init(&spi);
|
||||
|
||||
// Perform a hardware reset
|
||||
pinMode(AdafruitBleResetPin, PinDirectionOutput);
|
||||
digitalWrite(AdafruitBleResetPin, PinLevelHigh);
|
||||
digitalWrite(AdafruitBleResetPin, PinLevelLow);
|
||||
_delay_ms(10);
|
||||
digitalWrite(AdafruitBleResetPin, PinLevelHigh);
|
||||
|
||||
_delay_ms(1000); // Give it a second to initialize
|
||||
|
||||
state.initialized = true;
|
||||
return state.initialized;
|
||||
}
|
||||
|
||||
static inline uint8_t min(uint8_t a, uint8_t b) {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
static bool read_response(char *resp, uint16_t resplen, bool verbose) {
|
||||
char *dest = resp;
|
||||
char *end = dest + resplen;
|
||||
|
||||
while (true) {
|
||||
struct sdep_msg msg;
|
||||
|
||||
if (!sdep_recv_pkt(&msg, 2 * SdepTimeout)) {
|
||||
dprint("sdep_recv_pkt failed\n");
|
||||
return false;
|
||||
}
|
||||
|
||||
if (msg.type != SdepResponse) {
|
||||
*resp = 0;
|
||||
return false;
|
||||
}
|
||||
|
||||
uint8_t len = min(msg.len, end - dest);
|
||||
if (len > 0) {
|
||||
memcpy(dest, msg.payload, len);
|
||||
dest += len;
|
||||
}
|
||||
|
||||
if (!msg.more) {
|
||||
// No more data is expected!
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Ensure the response is NUL terminated
|
||||
*dest = 0;
|
||||
|
||||
// "Parse" the result text; we want to snip off the trailing OK or ERROR line
|
||||
// Rewind past the possible trailing CRLF so that we can strip it
|
||||
--dest;
|
||||
while (dest > resp && (dest[0] == '\n' || dest[0] == '\r')) {
|
||||
*dest = 0;
|
||||
--dest;
|
||||
}
|
||||
|
||||
// Look back for start of preceeding line
|
||||
char *last_line = strrchr(resp, '\n');
|
||||
if (last_line) {
|
||||
++last_line;
|
||||
} else {
|
||||
last_line = resp;
|
||||
}
|
||||
|
||||
bool success = false;
|
||||
static const char kOK[] PROGMEM = "OK";
|
||||
|
||||
success = !strcmp_P(last_line, kOK );
|
||||
|
||||
if (verbose || !success) {
|
||||
dprintf("result: %s\n", resp);
|
||||
}
|
||||
return success;
|
||||
}
|
||||
|
||||
static bool at_command(const char *cmd, char *resp, uint16_t resplen,
|
||||
bool verbose, uint16_t timeout) {
|
||||
const char *end = cmd + strlen(cmd);
|
||||
struct sdep_msg msg;
|
||||
|
||||
if (verbose) {
|
||||
dprintf("ble send: %s\n", cmd);
|
||||
}
|
||||
|
||||
if (resp) {
|
||||
// They want to decode the response, so we need to flush and wait
|
||||
// for all pending I/O to finish before we start this one, so
|
||||
// that we don't confuse the results
|
||||
resp_buf_wait(cmd);
|
||||
*resp = 0;
|
||||
}
|
||||
|
||||
// Fragment the command into a series of SDEP packets
|
||||
while (end - cmd > SdepMaxPayload) {
|
||||
sdep_build_pkt(&msg, BleAtWrapper, (uint8_t *)cmd, SdepMaxPayload, true);
|
||||
if (!sdep_send_pkt(&msg, timeout)) {
|
||||
return false;
|
||||
}
|
||||
cmd += SdepMaxPayload;
|
||||
}
|
||||
|
||||
sdep_build_pkt(&msg, BleAtWrapper, (uint8_t *)cmd, end - cmd, false);
|
||||
if (!sdep_send_pkt(&msg, timeout)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (resp == NULL) {
|
||||
auto now = timer_read();
|
||||
while (!resp_buf.enqueue(now)) {
|
||||
resp_buf_read_one(false);
|
||||
}
|
||||
auto later = timer_read();
|
||||
if (TIMER_DIFF_16(later, now) > 0) {
|
||||
dprintf("waited %dms for resp_buf\n", TIMER_DIFF_16(later, now));
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
return read_response(resp, resplen, verbose);
|
||||
}
|
||||
|
||||
bool at_command_P(const char *cmd, char *resp, uint16_t resplen, bool verbose) {
|
||||
auto cmdbuf = (char *)alloca(strlen_P(cmd) + 1);
|
||||
strcpy_P(cmdbuf, cmd);
|
||||
return at_command(cmdbuf, resp, resplen, verbose);
|
||||
}
|
||||
|
||||
bool adafruit_ble_is_connected(void) {
|
||||
return state.is_connected;
|
||||
}
|
||||
|
||||
bool adafruit_ble_enable_keyboard(void) {
|
||||
char resbuf[128];
|
||||
|
||||
if (!state.initialized && !ble_init()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
state.configured = false;
|
||||
|
||||
// Disable command echo
|
||||
static const char kEcho[] PROGMEM = "ATE=0";
|
||||
// Make the advertised name match the keyboard
|
||||
static const char kGapDevName[] PROGMEM =
|
||||
"AT+GAPDEVNAME=" STR(PRODUCT) " " STR(DESCRIPTION);
|
||||
// Turn on keyboard support
|
||||
static const char kHidEnOn[] PROGMEM = "AT+BLEHIDEN=1";
|
||||
|
||||
// Adjust intervals to improve latency. This causes the "central"
|
||||
// system (computer/tablet) to poll us every 10-30 ms. We can't
|
||||
// set a smaller value than 10ms, and 30ms seems to be the natural
|
||||
// processing time on my macbook. Keeping it constrained to that
|
||||
// feels reasonable to type to.
|
||||
static const char kGapIntervals[] PROGMEM = "AT+GAPINTERVALS=10,30,,";
|
||||
|
||||
// Reset the device so that it picks up the above changes
|
||||
static const char kATZ[] PROGMEM = "ATZ";
|
||||
|
||||
// Turn down the power level a bit
|
||||
static const char kPower[] PROGMEM = "AT+BLEPOWERLEVEL=-12";
|
||||
static PGM_P const configure_commands[] PROGMEM = {
|
||||
kEcho,
|
||||
kGapIntervals,
|
||||
kGapDevName,
|
||||
kHidEnOn,
|
||||
kPower,
|
||||
kATZ,
|
||||
};
|
||||
|
||||
uint8_t i;
|
||||
for (i = 0; i < sizeof(configure_commands) / sizeof(configure_commands[0]);
|
||||
++i) {
|
||||
PGM_P cmd;
|
||||
memcpy_P(&cmd, configure_commands + i, sizeof(cmd));
|
||||
|
||||
if (!at_command_P(cmd, resbuf, sizeof(resbuf))) {
|
||||
dprintf("failed BLE command: %S: %s\n", cmd, resbuf);
|
||||
goto fail;
|
||||
}
|
||||
}
|
||||
|
||||
state.configured = true;
|
||||
|
||||
// Check connection status in a little while; allow the ATZ time
|
||||
// to kick in.
|
||||
state.last_connection_update = timer_read();
|
||||
fail:
|
||||
return state.configured;
|
||||
}
|
||||
|
||||
static void set_connected(bool connected) {
|
||||
if (connected != state.is_connected) {
|
||||
if (connected) {
|
||||
print("****** BLE CONNECT!!!!\n");
|
||||
} else {
|
||||
print("****** BLE DISCONNECT!!!!\n");
|
||||
}
|
||||
state.is_connected = connected;
|
||||
|
||||
// TODO: if modifiers are down on the USB interface and
|
||||
// we cut over to BLE or vice versa, they will remain stuck.
|
||||
// This feels like a good point to do something like clearing
|
||||
// the keyboard and/or generating a fake all keys up message.
|
||||
// However, I've noticed that it takes a couple of seconds
|
||||
// for macOS to to start recognizing key presses after BLE
|
||||
// is in the connected state, so I worry that doing that
|
||||
// here may not be good enough.
|
||||
}
|
||||
}
|
||||
|
||||
void adafruit_ble_task(void) {
|
||||
char resbuf[48];
|
||||
|
||||
if (!state.configured && !adafruit_ble_enable_keyboard()) {
|
||||
return;
|
||||
}
|
||||
resp_buf_read_one(true);
|
||||
send_buf_send_one(SdepShortTimeout);
|
||||
|
||||
if (resp_buf.empty() && (state.event_flags & UsingEvents) &&
|
||||
digitalRead(AdafruitBleIRQPin)) {
|
||||
// Must be an event update
|
||||
if (at_command_P(PSTR("AT+EVENTSTATUS"), resbuf, sizeof(resbuf))) {
|
||||
uint32_t mask = strtoul(resbuf, NULL, 16);
|
||||
|
||||
if (mask & BleSystemConnected) {
|
||||
set_connected(true);
|
||||
} else if (mask & BleSystemDisconnected) {
|
||||
set_connected(false);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (timer_elapsed(state.last_connection_update) > ConnectionUpdateInterval) {
|
||||
bool shouldPoll = true;
|
||||
if (!(state.event_flags & ProbedEvents)) {
|
||||
// Request notifications about connection status changes.
|
||||
// This only works in SPIFRIEND firmware > 0.6.7, which is why
|
||||
// we check for this conditionally here.
|
||||
// Note that at the time of writing, HID reports only work correctly
|
||||
// with Apple products on firmware version 0.6.7!
|
||||
// https://forums.adafruit.com/viewtopic.php?f=8&t=104052
|
||||
if (at_command_P(PSTR("AT+EVENTENABLE=0x1"), resbuf, sizeof(resbuf))) {
|
||||
at_command_P(PSTR("AT+EVENTENABLE=0x2"), resbuf, sizeof(resbuf));
|
||||
state.event_flags |= UsingEvents;
|
||||
}
|
||||
state.event_flags |= ProbedEvents;
|
||||
|
||||
// leave shouldPoll == true so that we check at least once
|
||||
// before relying solely on events
|
||||
} else {
|
||||
shouldPoll = false;
|
||||
}
|
||||
|
||||
static const char kGetConn[] PROGMEM = "AT+GAPGETCONN";
|
||||
state.last_connection_update = timer_read();
|
||||
|
||||
if (at_command_P(kGetConn, resbuf, sizeof(resbuf))) {
|
||||
set_connected(atoi(resbuf));
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef SAMPLE_BATTERY
|
||||
// I don't know if this really does anything useful yet; the reported
|
||||
// voltage level always seems to be around 3200mV. We may want to just rip
|
||||
// this code out.
|
||||
if (timer_elapsed(state.last_battery_update) > BatteryUpdateInterval &&
|
||||
resp_buf.empty()) {
|
||||
state.last_battery_update = timer_read();
|
||||
|
||||
if (at_command_P(PSTR("AT+HWVBAT"), resbuf, sizeof(resbuf))) {
|
||||
state.vbat = atoi(resbuf);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
static bool process_queue_item(struct queue_item *item, uint16_t timeout) {
|
||||
char cmdbuf[48];
|
||||
char fmtbuf[64];
|
||||
|
||||
// Arrange to re-check connection after keys have settled
|
||||
state.last_connection_update = timer_read();
|
||||
|
||||
#if 1
|
||||
if (TIMER_DIFF_16(state.last_connection_update, item->added) > 0) {
|
||||
dprintf("send latency %dms\n",
|
||||
TIMER_DIFF_16(state.last_connection_update, item->added));
|
||||
}
|
||||
#endif
|
||||
|
||||
switch (item->queue_type) {
|
||||
case QTKeyReport:
|
||||
strcpy_P(fmtbuf,
|
||||
PSTR("AT+BLEKEYBOARDCODE=%02x-00-%02x-%02x-%02x-%02x-%02x-%02x"));
|
||||
snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->key.modifier,
|
||||
item->key.keys[0], item->key.keys[1], item->key.keys[2],
|
||||
item->key.keys[3], item->key.keys[4], item->key.keys[5]);
|
||||
return at_command(cmdbuf, NULL, 0, true, timeout);
|
||||
|
||||
case QTConsumer:
|
||||
strcpy_P(fmtbuf, PSTR("AT+BLEHIDCONTROLKEY=0x%04x"));
|
||||
snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->consumer);
|
||||
return at_command(cmdbuf, NULL, 0, true, timeout);
|
||||
|
||||
#ifdef MOUSE_ENABLE
|
||||
case QTMouseMove:
|
||||
strcpy_P(fmtbuf, PSTR("AT+BLEHIDMOUSEMOVE=%d,%d,%d,%d"));
|
||||
snprintf(cmdbuf, sizeof(cmdbuf), fmtbuf, item->mousemove.x,
|
||||
item->mousemove.y, item->mousemove.scroll, item->mousemove.pan);
|
||||
return at_command(cmdbuf, NULL, 0, true, timeout);
|
||||
#endif
|
||||
default:
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
bool adafruit_ble_send_keys(uint8_t hid_modifier_mask, uint8_t *keys,
|
||||
uint8_t nkeys) {
|
||||
struct queue_item item;
|
||||
bool didWait = false;
|
||||
|
||||
item.queue_type = QTKeyReport;
|
||||
item.key.modifier = hid_modifier_mask;
|
||||
item.added = timer_read();
|
||||
|
||||
while (nkeys >= 0) {
|
||||
item.key.keys[0] = keys[0];
|
||||
item.key.keys[1] = nkeys >= 1 ? keys[1] : 0;
|
||||
item.key.keys[2] = nkeys >= 2 ? keys[2] : 0;
|
||||
item.key.keys[3] = nkeys >= 3 ? keys[3] : 0;
|
||||
item.key.keys[4] = nkeys >= 4 ? keys[4] : 0;
|
||||
item.key.keys[5] = nkeys >= 5 ? keys[5] : 0;
|
||||
|
||||
if (!send_buf.enqueue(item)) {
|
||||
if (!didWait) {
|
||||
dprint("wait for buf space\n");
|
||||
didWait = true;
|
||||
}
|
||||
send_buf_send_one();
|
||||
continue;
|
||||
}
|
||||
|
||||
if (nkeys <= 6) {
|
||||
return true;
|
||||
}
|
||||
|
||||
nkeys -= 6;
|
||||
keys += 6;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool adafruit_ble_send_consumer_key(uint16_t keycode, int hold_duration) {
|
||||
struct queue_item item;
|
||||
|
||||
item.queue_type = QTConsumer;
|
||||
item.consumer = keycode;
|
||||
|
||||
while (!send_buf.enqueue(item)) {
|
||||
send_buf_send_one();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
#ifdef MOUSE_ENABLE
|
||||
bool adafruit_ble_send_mouse_move(int8_t x, int8_t y, int8_t scroll,
|
||||
int8_t pan) {
|
||||
struct queue_item item;
|
||||
|
||||
item.queue_type = QTMouseMove;
|
||||
item.mousemove.x = x;
|
||||
item.mousemove.y = y;
|
||||
item.mousemove.scroll = scroll;
|
||||
item.mousemove.pan = pan;
|
||||
|
||||
while (!send_buf.enqueue(item)) {
|
||||
send_buf_send_one();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
uint32_t adafruit_ble_read_battery_voltage(void) {
|
||||
return state.vbat;
|
||||
}
|
||||
|
||||
bool adafruit_ble_set_mode_leds(bool on) {
|
||||
if (!state.configured) {
|
||||
return false;
|
||||
}
|
||||
|
||||
// The "mode" led is the red blinky one
|
||||
at_command_P(on ? PSTR("AT+HWMODELED=1") : PSTR("AT+HWMODELED=0"), NULL, 0);
|
||||
|
||||
// Pin 19 is the blue "connected" LED; turn that off too.
|
||||
// When turning LEDs back on, don't turn that LED on if we're
|
||||
// not connected, as that would be confusing.
|
||||
at_command_P(on && state.is_connected ? PSTR("AT+HWGPIO=19,1")
|
||||
: PSTR("AT+HWGPIO=19,0"),
|
||||
NULL, 0);
|
||||
return true;
|
||||
}
|
||||
|
||||
// https://learn.adafruit.com/adafruit-feather-32u4-bluefruit-le/ble-generic#at-plus-blepowerlevel
|
||||
bool adafruit_ble_set_power_level(int8_t level) {
|
||||
char cmd[46];
|
||||
if (!state.configured) {
|
||||
return false;
|
||||
}
|
||||
snprintf(cmd, sizeof(cmd), "AT+BLEPOWERLEVEL=%d", level);
|
||||
return at_command(cmd, NULL, 0, false);
|
||||
}
|
@ -0,0 +1,60 @@
|
||||
/* Bluetooth Low Energy Protocol for QMK.
|
||||
* Author: Wez Furlong, 2016
|
||||
* Supports the Adafruit BLE board built around the nRF51822 chip.
|
||||
*/
|
||||
#pragma once
|
||||
#ifdef ADAFRUIT_BLE_ENABLE
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/* Instruct the module to enable HID keyboard support and reset */
|
||||
extern bool adafruit_ble_enable_keyboard(void);
|
||||
|
||||
/* Query to see if the BLE module is connected */
|
||||
extern bool adafruit_ble_query_is_connected(void);
|
||||
|
||||
/* Returns true if we believe that the BLE module is connected.
|
||||
* This uses our cached understanding that is maintained by
|
||||
* calling ble_task() periodically. */
|
||||
extern bool adafruit_ble_is_connected(void);
|
||||
|
||||
/* Call this periodically to process BLE-originated things */
|
||||
extern void adafruit_ble_task(void);
|
||||
|
||||
/* Generates keypress events for a set of keys.
|
||||
* The hid modifier mask specifies the state of the modifier keys for
|
||||
* this set of keys.
|
||||
* Also sends a key release indicator, so that the keys do not remain
|
||||
* held down. */
|
||||
extern bool adafruit_ble_send_keys(uint8_t hid_modifier_mask, uint8_t *keys,
|
||||
uint8_t nkeys);
|
||||
|
||||
/* Send a consumer keycode, holding it down for the specified duration
|
||||
* (milliseconds) */
|
||||
extern bool adafruit_ble_send_consumer_key(uint16_t keycode, int hold_duration);
|
||||
|
||||
#ifdef MOUSE_ENABLE
|
||||
/* Send a mouse/wheel movement report.
|
||||
* The parameters are signed and indicate positive of negative direction
|
||||
* change. */
|
||||
extern bool adafruit_ble_send_mouse_move(int8_t x, int8_t y, int8_t scroll,
|
||||
int8_t pan);
|
||||
#endif
|
||||
|
||||
/* Compute battery voltage by reading an analog pin.
|
||||
* Returns the integer number of millivolts */
|
||||
extern uint32_t adafruit_ble_read_battery_voltage(void);
|
||||
|
||||
extern bool adafruit_ble_set_mode_leds(bool on);
|
||||
extern bool adafruit_ble_set_power_level(int8_t level);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif // ADAFRUIT_BLE_ENABLE
|
@ -0,0 +1,66 @@
|
||||
#pragma once
|
||||
// A simple ringbuffer holding Size elements of type T
|
||||
template <typename T, uint8_t Size>
|
||||
class RingBuffer {
|
||||
protected:
|
||||
T buf_[Size];
|
||||
uint8_t head_{0}, tail_{0};
|
||||
public:
|
||||
inline uint8_t nextPosition(uint8_t position) {
|
||||
return (position + 1) % Size;
|
||||
}
|
||||
|
||||
inline uint8_t prevPosition(uint8_t position) {
|
||||
if (position == 0) {
|
||||
return Size - 1;
|
||||
}
|
||||
return position - 1;
|
||||
}
|
||||
|
||||
inline bool enqueue(const T &item) {
|
||||
static_assert(Size > 1, "RingBuffer size must be > 1");
|
||||
uint8_t next = nextPosition(head_);
|
||||
if (next == tail_) {
|
||||
// Full
|
||||
return false;
|
||||
}
|
||||
|
||||
buf_[head_] = item;
|
||||
head_ = next;
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool get(T &dest, bool commit = true) {
|
||||
auto tail = tail_;
|
||||
if (tail == head_) {
|
||||
// No more data
|
||||
return false;
|
||||
}
|
||||
|
||||
dest = buf_[tail];
|
||||
tail = nextPosition(tail);
|
||||
|
||||
if (commit) {
|
||||
tail_ = tail;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
inline bool empty() const { return head_ == tail_; }
|
||||
|
||||
inline uint8_t size() const {
|
||||
int diff = head_ - tail_;
|
||||
if (diff >= 0) {
|
||||
return diff;
|
||||
}
|
||||
return Size + diff;
|
||||
}
|
||||
|
||||
inline T& front() {
|
||||
return buf_[tail_];
|
||||
}
|
||||
|
||||
inline bool peek(T &item) {
|
||||
return get(item, false);
|
||||
}
|
||||
};
|
Loading…
Reference in New Issue