@ -23,6 +23,10 @@
# define TAPPING_TERM 200
# endif
# ifndef BREATHING_PERIOD
# define BREATHING_PERIOD 6
# endif
# include "backlight.h"
extern backlight_config_t backlight_config ;
@ -618,7 +622,17 @@ bool process_record_quantum(keyrecord_t *record) {
}
send_keyboard_report ( ) ;
return false ;
}
# if defined(BACKLIGHT_ENABLE) && defined(BACKLIGHT_BREATHING)
case BL_BRTG : {
if ( record - > event . pressed )
breathing_toggle ( ) ;
return false ;
}
# endif
default : {
shift_interrupted [ 0 ] = true ;
shift_interrupted [ 1 ] = true ;
@ -831,6 +845,7 @@ void matrix_scan_quantum() {
static const uint8_t backlight_pin = BACKLIGHT_PIN ;
// depending on the pin, we use a different output compare unit
# if BACKLIGHT_PIN == B7
# define COM1x1 COM1C1
# define OCR1x OCR1C
@ -841,17 +856,18 @@ static const uint8_t backlight_pin = BACKLIGHT_PIN;
# define COM1x1 COM1A1
# define OCR1x OCR1A
# else
# define NO_ BACKLIGHT_CLOCK
# define NO_ HARDWARE_PWM
# endif
# ifndef BACKLIGHT_ON_STATE
# define BACKLIGHT_ON_STATE 0
# endif
# ifdef NO_HARDWARE_PWM // pwm through software
__attribute__ ( ( weak ) )
void backlight_init_ports ( void )
{
// Setup backlight pin as output and output to on state.
// DDRx |= n
_SFR_IO8 ( ( backlight_pin > > 4 ) + 1 ) | = _BV ( backlight_pin & 0xF ) ;
@ -862,83 +878,15 @@ void backlight_init_ports(void)
// PORTx |= n
_SFR_IO8 ( ( backlight_pin > > 4 ) + 2 ) | = _BV ( backlight_pin & 0xF ) ;
# endif
# ifndef NO_BACKLIGHT_CLOCK
// Use full 16-bit resolution.
ICR1 = 0xFFFF ;
// I could write a wall of text here to explain... but TL;DW
// Go read the ATmega32u4 datasheet.
// And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
// Pin PB7 = OCR1C (Timer 1, Channel C)
// Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
// (i.e. start high, go low when counter matches.)
// WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
// Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
TCCR1A = _BV ( COM1x1 ) | _BV ( WGM11 ) ; // = 0b00001010;
TCCR1B = _BV ( WGM13 ) | _BV ( WGM12 ) | _BV ( CS10 ) ; // = 0b00011001;
# endif
backlight_init ( ) ;
# ifdef BACKLIGHT_BREATHING
breathing_defaults ( ) ;
# endif
}
__attribute__ ( ( weak ) )
void backlight_set ( uint8_t level )
{
// Prevent backlight blink on lowest level
// #if BACKLIGHT_ON_STATE == 0
// // PORTx &= ~n
// _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
// #else
// // PORTx |= n
// _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
// #endif
if ( level = = 0 ) {
# ifndef NO_BACKLIGHT_CLOCK
// Turn off PWM control on backlight pin, revert to output low.
TCCR1A & = ~ ( _BV ( COM1x1 ) ) ;
OCR1x = 0x0 ;
# else
// #if BACKLIGHT_ON_STATE == 0
// // PORTx |= n
// _SFR_IO8((backlight_pin >> 4) + 2) |= _BV(backlight_pin & 0xF);
// #else
// // PORTx &= ~n
// _SFR_IO8((backlight_pin >> 4) + 2) &= ~_BV(backlight_pin & 0xF);
// #endif
# endif
}
# ifndef NO_BACKLIGHT_CLOCK
else if ( level = = BACKLIGHT_LEVELS ) {
// Turn on PWM control of backlight pin
TCCR1A | = _BV ( COM1x1 ) ;
// Set the brightness
OCR1x = 0xFFFF ;
}
else {
// Turn on PWM control of backlight pin
TCCR1A | = _BV ( COM1x1 ) ;
// Set the brightness
OCR1x = 0xFFFF > > ( ( BACKLIGHT_LEVELS - level ) * ( ( BACKLIGHT_LEVELS + 1 ) / 2 ) ) ;
}
# endif
# ifdef BACKLIGHT_BREATHING
breathing_intensity_default ( ) ;
# endif
}
void backlight_set ( uint8_t level ) { }
uint8_t backlight_tick = 0 ;
void backlight_task ( void ) {
# ifdef NO_BACKLIGHT_CLOCK
if ( ( 0xFFFF > > ( ( BACKLIGHT_LEVELS - backlight_config . level ) * ( ( BACKLIGHT_LEVELS + 1 ) / 2 ) ) ) & ( 1 < < backlight_tick ) ) {
if ( ( 0xFFFF > > ( ( BACKLIGHT_LEVELS - get_backlight_level ( ) ) * ( ( BACKLIGHT_LEVELS + 1 ) / 2 ) ) ) & ( 1 < < backlight_tick ) ) {
# if BACKLIGHT_ON_STATE == 0
// PORTx &= ~n
_SFR_IO8 ( ( backlight_pin > > 4 ) + 2 ) & = ~ _BV ( backlight_pin & 0xF ) ;
@ -955,232 +903,216 @@ void backlight_task(void) {
_SFR_IO8 ( ( backlight_pin > > 4 ) + 2 ) & = ~ _BV ( backlight_pin & 0xF ) ;
# endif
}
backlight_tick = ( backlight_tick + 1 ) % 16 ;
# endif
backlight_tick = backlight_tick + 1 % 16 ;
}
# ifdef BACKLIGHT_BREATHING
# error "Backlight breathing only available with hardware PWM. Please disable."
# endif
# ifdef NO_BACKLIGHT_CLOCK
void breathing_defaults ( void ) { }
void breathing_intensity_default ( void ) { }
# else
# else // pwm through timer
# define TIMER_TOP 0xFFFFU
// See http://jared.geek.nz/2013/feb/linear-led-pwm
static uint16_t cie_lightness ( uint16_t v ) {
if ( v < = 5243 ) // if below 8% of max
return v / 9 ; // same as dividing by 900%
else {
uint32_t y = ( ( ( uint32_t ) v + 10486 ) < < 8 ) / ( 10486 + 0xFFFFUL ) ; // add 16% of max and compare
// to get a useful result with integer division, we shift left in the expression above
// and revert what we've done again after squaring.
y = y * y * y > > 8 ;
if ( y > 0xFFFFUL ) // prevent overflow
return 0xFFFFU ;
else
return ( uint16_t ) y ;
}
}
// range for val is [0..TIMER_TOP]. PWM pin is high while the timer count is below val.
static inline void set_pwm ( uint16_t val ) {
OCR1x = val ;
}
__attribute__ ( ( weak ) )
void backlight_set ( uint8_t level ) {
if ( level > BACKLIGHT_LEVELS )
level = BACKLIGHT_LEVELS ;
if ( level = = 0 ) {
// Turn off PWM control on backlight pin
TCCR1A & = ~ ( _BV ( COM1x1 ) ) ;
} else {
// Turn on PWM control of backlight pin
TCCR1A | = _BV ( COM1x1 ) ;
}
// Set the brightness
set_pwm ( cie_lightness ( TIMER_TOP * ( uint32_t ) level / BACKLIGHT_LEVELS ) ) ;
}
void backlight_task ( void ) { }
# ifdef BACKLIGHT_BREATHING
# define BREATHING_NO_HALT 0
# define BREATHING_HALT_OFF 1
# define BREATHING_HALT_ON 2
# define BREATHING_STEPS 128
static uint8_t breath_intensity ;
static uint8_t breath_speed ;
static uint16_t breathing_index ;
static uint8_t breathing_halt ;
static uint8_t breathing_period = BREATHING_PERIOD ;
static uint8_t breathing_halt = BREATHING_NO_HALT ;
static uint16_t breathing_counter = 0 ;
void breathing_enable ( void )
{
if ( get_backlight_level ( ) = = 0 )
{
breathing_index = 0 ;
}
else
{
// Set breathing_index to be at the midpoint (brightest point)
breathing_index = 0x20 < < breath_speed ;
}
bool is_breathing ( void ) {
return ! ! ( TIMSK1 & _BV ( TOIE1 ) ) ;
}
breathing_halt = BREATHING_NO_HALT ;
# define breathing_interrupt_enable() do {TIMSK1 |= _BV(TOIE1);} while (0)
# define breathing_interrupt_disable() do {TIMSK1 &= ~_BV(TOIE1);} while (0)
# define breathing_min() do {breathing_counter = 0;} while (0)
# define breathing_max() do {breathing_counter = breathing_period * 244 / 2;} while (0)
// Enable breathing interrupt
TIMSK1 | = _BV ( OCIE1A ) ;
void breathing_enable ( void )
{
breathing_counter = 0 ;
breathing_halt = BREATHING_NO_HALT ;
breathing_interrupt_enable ( ) ;
}
void breathing_pulse ( void )
{
if ( get_backlight_level ( ) = = 0 )
{
breathing_index = 0 ;
}
breathing_min ( ) ;
else
{
// Set breathing_index to be at the midpoint + 1 (brightest point)
breathing_index = 0x21 < < breath_speed ;
}
breathing_max ( ) ;
breathing_halt = BREATHING_HALT_ON ;
// Enable breathing interrupt
TIMSK1 | = _BV ( OCIE1A ) ;
breathing_interrupt_enable ( ) ;
}
void breathing_disable ( void )
{
// Disable breathing interrupt
TIMSK1 & = ~ _BV ( OCIE1A ) ;
breathing_interrupt_disable ( ) ;
// Restore backlight level
backlight_set ( get_backlight_level ( ) ) ;
}
void breathing_self_disable ( void )
{
if ( get_backlight_level ( ) = = 0 )
{
breathing_halt = BREATHING_HALT_OFF ;
}
else
{
breathing_halt = BREATHING_HALT_ON ;
}
//backlight_set(get_backlight_level());
if ( get_backlight_level ( ) = = 0 )
breathing_halt = BREATHING_HALT_OFF ;
else
breathing_halt = BREATHING_HALT_ON ;
}
void breathing_toggle ( void )
{
if ( ! is_breathing ( ) )
{
if ( get_backlight_level ( ) = = 0 )
{
breathing_index = 0 ;
}
else
{
// Set breathing_index to be at the midpoint + 1 (brightest point)
breathing_index = 0x21 < < breath_speed ;
}
breathing_halt = BREATHING_NO_HALT ;
}
// Toggle breathing interrupt
TIMSK1 ^ = _BV ( OCIE1A ) ;
// Restore backlight level
if ( ! is_breathing ( ) )
{
backlight_set ( get_backlight_level ( ) ) ;
}
void breathing_toggle ( void ) {
if ( is_breathing ( ) )
breathing_disable ( ) ;
else
breathing_enable ( ) ;
}
bool is_breathing ( void )
void breathing_period_set ( uint8_t value )
{
return ( TIMSK1 & & _BV ( OCIE1A ) ) ;
if ( ! value )
value = 1 ;
breathing_period = value ;
}
void breathing_intensity_default ( void )
{
//breath_intensity = (uint8_t)((uint16_t)100 * (uint16_t)get_backlight_level() / (uint16_t)BACKLIGHT_LEVELS);
breath_intensity = ( ( BACKLIGHT_LEVELS - get_backlight_level ( ) ) * ( ( BACKLIGHT_LEVELS + 1 ) / 2 ) ) ;
void breathing_period_default ( void ) {
breathing_period_set ( BREATHING_PERIOD ) ;
}
void breathing_ intensity_set( uint8_t value )
void breathing_period_inc ( void )
{
breath_intensity = value ;
breathing_period_set ( breathing_period + 1 ) ;
}
void breathing_ speed_default ( void )
void breathing_period_dec ( void )
{
breath_speed = 4 ;
breathing_period_set ( breathing_period - 1 ) ;
}
void breathing_speed_set ( uint8_t value )
{
bool is_breathing_now = is_breathing ( ) ;
uint8_t old_breath_speed = breath_speed ;
if ( is_breathing_now )
{
// Disable breathing interrupt
TIMSK1 & = ~ _BV ( OCIE1A ) ;
}
breath_speed = value ;
if ( is_breathing_now )
{
// Adjust index to account for new speed
breathing_index = ( ( ( uint8_t ) ( ( breathing_index ) > > old_breath_speed ) ) & 0x3F ) < < breath_speed ;
// Enable breathing interrupt
TIMSK1 | = _BV ( OCIE1A ) ;
}
}
/* To generate breathing curve in python:
* from math import sin , pi ; [ int ( sin ( x / 128.0 * pi ) * * 4 * 255 ) for x in range ( 128 ) ]
*/
static const uint8_t breathing_table [ BREATHING_STEPS ] PROGMEM = { 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 1 , 2 , 3 , 4 , 5 , 6 , 8 , 10 , 12 , 15 , 17 , 20 , 24 , 28 , 32 , 36 , 41 , 46 , 51 , 57 , 63 , 70 , 76 , 83 , 91 , 98 , 106 , 113 , 121 , 129 , 138 , 146 , 154 , 162 , 170 , 178 , 185 , 193 , 200 , 207 , 213 , 220 , 225 , 231 , 235 , 240 , 244 , 247 , 250 , 252 , 253 , 254 , 255 , 254 , 253 , 252 , 250 , 247 , 244 , 240 , 235 , 231 , 225 , 220 , 213 , 207 , 200 , 193 , 185 , 178 , 170 , 162 , 154 , 146 , 138 , 129 , 121 , 113 , 106 , 98 , 91 , 83 , 76 , 70 , 63 , 57 , 51 , 46 , 41 , 36 , 32 , 28 , 24 , 20 , 17 , 15 , 12 , 10 , 8 , 6 , 5 , 4 , 3 , 2 , 1 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
void breathing_speed_inc ( uint8_t value )
{
if ( ( uint16_t ) ( breath_speed - value ) > 10 )
{
breathing_speed_set ( 0 ) ;
}
else
{
breathing_speed_set ( breath_speed - value ) ;
}
// Use this before the cie_lightness function.
static inline uint16_t scale_backlight ( uint16_t v ) {
return v / BACKLIGHT_LEVELS * get_backlight_level ( ) ;
}
void breathing_speed_dec ( uint8_t value )
/* Assuming a 16MHz CPU clock and a timer that resets at 64k (ICR1), the following interrupt handler will run
* about 244 times per second .
*/
ISR ( TIMER1_OVF_vect )
{
if ( ( uint16_t ) ( breath_speed + value ) > 10 )
{
breathing_speed_set ( 10 ) ;
}
else
{
breathing_speed_set ( breath_speed + value ) ;
}
}
uint16_t interval = ( uint16_t ) breathing_period * 244 / BREATHING_STEPS ;
// resetting after one period to prevent ugly reset at overflow.
breathing_counter = ( breathing_counter + 1 ) % ( breathing_period * 244 ) ;
uint8_t index = breathing_counter / interval % BREATHING_STEPS ;
if ( ( ( breathing_halt = = BREATHING_HALT_ON ) & & ( index = = BREATHING_STEPS / 2 ) ) | |
( ( breathing_halt = = BREATHING_HALT_OFF ) & & ( index = = BREATHING_STEPS - 1 ) ) )
{
breathing_interrupt_disable ( ) ;
}
void breathing_defaults ( void )
{
breathing_intensity_default ( ) ;
breathing_speed_default ( ) ;
breathing_halt = BREATHING_NO_HALT ;
set_pwm ( cie_lightness ( scale_backlight ( ( uint16_t ) pgm_read_byte ( & breathing_table [ index ] ) * 0x0101U ) ) ) ;
}
/* Breathing Sleep LED brighness(PWM On period) table
* ( 64 [ steps ] * 4 [ duration ] ) / 64 [ PWM periods / s ] = 4 second breath cycle
*
* http : //www.wolframalpha.com/input/?i=%28sin%28+x%2F64*pi%29**8+*+255%2C+x%3D0+to+63
* ( 0. .63 ) . each { | x | p ( ( sin ( x / 64.0 * PI ) * * 8 ) * 255 ) . to_i }
*/
static const uint8_t breathing_table [ 64 ] PROGMEM = {
0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 , 2 , 4 , 6 , 10 ,
15 , 23 , 32 , 44 , 58 , 74 , 93 , 113 , 135 , 157 , 179 , 199 , 218 , 233 , 245 , 252 ,
255 , 252 , 245 , 233 , 218 , 199 , 179 , 157 , 135 , 113 , 93 , 74 , 58 , 44 , 32 , 23 ,
15 , 10 , 6 , 4 , 2 , 1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 ,
} ;
# endif // BACKLIGHT_BREATHING
ISR ( TIMER1_COMPA_vect )
__attribute__ ( ( weak ) )
void backlight_init_ports ( void )
{
// OCR1x = (pgm_read_byte(&breathing_table[ ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F ] )) * breath_intensity;
uint8_t local_index = ( ( uint8_t ) ( ( breathing_index + + ) > > breath_speed ) ) & 0x3F ;
if ( ( ( breathing_halt = = BREATHING_HALT_ON ) & & ( local_index = = 0x20 ) ) | | ( ( breathing_halt = = BREATHING_HALT_OFF ) & & ( local_index = = 0x3F ) ) )
{
// Disable breathing interrupt
TIMSK1 & = ~ _BV ( OCIE1A ) ;
}
OCR1x = ( uint16_t ) ( ( ( uint16_t ) pgm_read_byte ( & breathing_table [ local_index ] ) * 257 ) ) > > breath_intensity ;
// Setup backlight pin as output and output to on state.
// DDRx |= n
_SFR_IO8 ( ( backlight_pin > > 4 ) + 1 ) | = _BV ( backlight_pin & 0xF ) ;
# if BACKLIGHT_ON_STATE == 0
// PORTx &= ~n
_SFR_IO8 ( ( backlight_pin > > 4 ) + 2 ) & = ~ _BV ( backlight_pin & 0xF ) ;
# else
// PORTx |= n
_SFR_IO8 ( ( backlight_pin > > 4 ) + 2 ) | = _BV ( backlight_pin & 0xF ) ;
# endif
// I could write a wall of text here to explain... but TL;DW
// Go read the ATmega32u4 datasheet.
// And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
// Pin PB7 = OCR1C (Timer 1, Channel C)
// Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
// (i.e. start high, go low when counter matches.)
// WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
// Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
/*
14.8 .3 :
" In fast PWM mode, the compare units allow generation of PWM waveforms on the OCnx pins. Setting the COMnx1:0 bits to two will produce a non-inverted PWM [..]. "
" In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGMn3:0 = 5, 6, or 7), the value in ICRn (WGMn3:0 = 14), or the value in OCRnA (WGMn3:0 = 15). "
*/
TCCR1A = _BV ( COM1x1 ) | _BV ( WGM11 ) ; // = 0b00001010;
TCCR1B = _BV ( WGM13 ) | _BV ( WGM12 ) | _BV ( CS10 ) ; // = 0b00011001;
// Use full 16-bit resolution. Counter counts to ICR1 before reset to 0.
ICR1 = TIMER_TOP ;
backlight_init ( ) ;
# ifdef BACKLIGHT_BREATHING
breathing_enable ( ) ;
# endif
}
# endif // NO_BACKLIGHT_CLOCK
# endif // breathing
# endif // NO_HARDWARE_PWM
# else // backlight
__attribute__ ( ( weak ) )
void backlight_init_ports ( void )
{
}
void backlight_init_ports ( void ) { }
__attribute__ ( ( weak ) )
void backlight_set ( uint8_t level )
{
}
void backlight_set ( uint8_t level ) { }
# endif // backlight