
Efficient Lexicographic Encoding of Numbers

Peter Seymour

June 5, 2008

1 Introduction

This paper explores ways of textually representing numbers such that their
natural order is preserved as a lexicographic order of their representations. Once
this is achieved numbers can be used within any text system alongside other
text whilst only requiring a single order relation. New number types can be
added and an order implied without requiring any modification to the system.
This is particulary useful when buiding a data storage system that is extensible
in the range of available types.

A textual representation of a number amounts to constructing a sequence of
symbols. The most primitive construction is to represent the natural numbers.
This construction can then be used to build up more complex representations
such as signed integers, floating point numbers and tuples.

2 Natural numbers

Chose a base b > 1 then for any n ∈ N it can be expanded as n = a0 + a1b +
. . . + akbk for some k. Now writing the coefficients in reverse order gives the
usual representation. However, performing a lexicographic comparison requires
the sequence of symbols to be right aligned so that coefficients are compared
only where their degree is the same. For a left aligned representation a sequence
of zeroes needs to be added but for the general case this will not be bounded.

For the rest of this paper it will be assumed that b = 10. The problem
outlined above can be seen if we try to compare 11 with 7:

7

11

The lexicographic order does not agree with the numerical order. Analysing
this more carefully leads to the conclusion that once a prefix has been used it
must be used for all subsequent numbers or a proceeding prefix used. However,
since this prefix is finite it must eventually reach a maximum and then be used
for the rest of the natural numbers.

For instance:

1



0

1

10

11

At this stage all numbers not sharing the prefix could be removed along with
the prefix and a countable set of shorter representations would remain. This
would still represent all the natural numbers and leads to the conclusion that
changing a prefix only affects a finite prefix of the natural numbers. In the most
degenerate case this results in unary notation:

0

00

000

0000

A slightly less denegerate case using all the available symbols is:

0

1
...
9

90

91
...
99

990

991
...

Looking at the lengths of the representations gives for unary a length equal to
n+1 and for the second alternative a length equal to dn/10e which is only a mod-
est improvement. These representations though are useful for small numbers
and are therefore useful as a component of more complicated representations.

The usual representation has a length of order log10n which is significantly
better than the two alternatives listed above. The construction that now follows
is a hybrid of both approaches.

2.1 A Recursive Representation

The usual reprentation works when the lengths of any two encodings are the
same. Where the lengths differ the shorter one always preceeds the longer. The
simple solution is to prepend the representations with their lengths. Of course
the lengths must be represented in such as way that they can be compared
lexicographically. Going back to the first example of 7 and 11 yields:

2



17
211

Which is now correctly ordered and will work for all numbers whose length
is no greater than 9. For lengths greater than 9, the process is repeated. So for
a length of 10 the representation is prepended with 10 and its length in turn
prepended, namely 2. This almost works but consider 123 and 1234567890:

3123
2101234567890

The underlining highlights the problem that a sequence of 2 lengths is being
compared with a sequence of 1. This is precisely the orignal problem of left-
alignment causing numbers of different degrees to be compared. The length of
this sequence needs to be prepended but given it is a much smaller number the
unary representation can be used. Here a new symbol + is used that follows
all other digits to distinguish it from the regular digits that will follow. This
symbol counts in unary the length of the sequence of numbers.

+7

++3123
+++2101234567890

2.2 Zero

In many respects zero has length zero since setting len10(n) = dlog10(n + 1)e is
a natural measure of the length. With this in mind zero can be represented by
a possibly empty sequence of 0s, although a single 0 is preferred. This becomes
more of an issue for the integers where not handling zero separately would cause
it to have both a positive and negative version.

2.3 Uniqueness

The mapping from the natural numbers to symbol sequences is neither onto
nor one-to-one. The second condition allows for multiple representations of a
number since +1 can be inserted after the last + in any number.

++299
+++1299

++++11299
+++++111299

Using multiple representations will disturb the ordering so a canonical repre-
sentation is preferred. This can be described by a simple method of constructing
the shortest sequence. A short fragment of pseudo-code best explains this where
len is defined as ceil(log10(n+1)).

3



elen( n )

if n > 0 then print ’+’

if len(n) > 1 then elen( len(n) )

print n

The final length for a number n > 1 is k + Σk
1
leni

10
(n) where k ≥ 1 is the

smallest number such that lenk
10

(n) = 1. Here len10(n) = dlog10(n+1)e. This is
O(log10n) and hence very efficient. A 1000 digit number would take only 1008
symbols.

+++41000 . . .

3 Integers

The integers can be constructed by placing two copies of the positive naturals
end to end and reversing the order of the first. Since every positive natural
begins with + a second copy can be denoted by using - in its place. Here
- preceeds all digits and hence + also. This successfully orders all negative
numbers before positive ones but the relative order of negative numbers will be
incorrect. To reverse this order it suffices to invert each digit d by replacing it
with 9 − d.

For instance

-1234567891 ---7898765432108
-1234567890 ---7898765432109
-1234567889 ---7898765432110

...
-11 --788

-10 --789

-9 -0
...

-2 -7

-1 -8

0 0

+1 +1

+2 +2
...

+9 +9

+10 ++210

+11 ++211
...

+1234567889 +++2101234567889
+1234567890 +++2101234567890
+1234567891 +++2101234567891

4



4 Small Decimals

For a decimal r ∈ (0, 1) its usual expansion after the point (leading zeroes
included but trailing zeroes removed) is left-aligned and naturally ordered. Ex-
tending this to small negative decimals requires modification firstly, by adding
a sign to negative numbers for instance -. For consistency a + will be added
to positive numbers. Secondly, the digits need to be inverted as for negative
integers. Finally, a terminator is required to distinguish longer but lower num-
bers such as −0.12 and −0.123 which would be -87 and -876 respectively. This
can be accomplished by a symbol that proceeds all digits such as +. Again for
consistency - will be added at the end of the postive decimals. Zero can appear
as its own digit without a sign enabling the representation of r ∈ (−1, 1).

For example

-0.9995 -0004+

-0.999 -000+

-0.0123 -9876+

-0.00123 -99876+

-0.0001233 -9998766+

-0.000123 -999876+

0 0

+0.000123 +000123-

+0.0001233 +0001233-

+0.00123 +00123-

+0.0123 +0123-

+0.999 +999-

+0.9995 +9995-

5 Large Decimals

Extending small decimals to include those larger than 1 is achieved by adding
the integer component separately. Each number is then a pair consisting of its
(signed) integer component and a small decimal. Where the integer component
is zero but there are digits after the point it must take a sign namely +0 or
-0. The integer will be length prefixed so no symbol is required to indicate the
point.

This is best shown by example.

5



-100.5 --68994+
-10.5 --7894+

-3.145 -3854+

-3.14 -385+

-1.01 -198+

-1 -1+

-0.0001233 -09998766+

-0.000123 -0999876+

0 0

+0.000123 +0000123-

+0.0001233 +00001233-

+1 +1-

+1.01 +101-

+3.14 +314-

+3.145 +3145-

+10.5 ++2105-
+100.5 ++31005-

6 Floating Point Numbers

A floating point number f takes a mantissa m ∈ [ 1

10
, 1) and an integer exponent e

such that f = 10e ×±m. This accounts for all decimals with a finite expansion.
The mantissa will always have a non-zero digit after the point and for each
number f will have a unique exponent. This is the normalised representation
and ensures comparison can be determined by the exponent where it differs
otherwise by the mantissa.

The floating point number is then a triple (+, e, m) or (−,−e, m) consisiting
of a sign followed by the exponent and mantissa. The exponent is represented
as an integer using the recursive method and is negated for negative numbers
to ensure ordering. The mantissa is represented as a postive small decimal but
its sign must appear at the front of the entire representation. As with large
decimals there is no need to include a delimiter since the exponent is length
prefixed. Zero is represented as 0 since a sign symbol will be used for all other
numbers. The resulting representations look like the large decimals with a sign
added except the integer is used multiplicatively to scale the number rather
than as an additive offset. In effect it is a run length encoded version of a large
decimal and acts as a compression technique.

These example include a space after the sign for readability.

6



−0.1 × 1011 - --7888+
−0.1 × 1010 - --7898+

-1.4 - -885+

-1.3 - -886+

-1 - -88+

-0.123 - 0876+

-0.0123 - +1876+

-0.001233 - +28766+

-0.00123 - +2876+

0 0

+0.00123 + -7123-

+0.001233 + -71233-

+0.0123 + -8123-

+0.123 + 0123-

+1 + +11-

+1.3 + +113-

+1.4 + +114-

+0.1 × 1010 + ++2101-
+0.1 × 1011 + ++2111-

7 Conclusion

An efficient encoding of various number groups has been demonstrated that has
the same length order, namely log(n), as the usual written representation. This
has been achieved by only adding two symbols to the alphabet. The construc-
tions shown have been built from the natural numbers using length prefixing or
the natural left-alignment of decimal expansions. This is a general technique
that can be used to build complex numbers, tuples, etc. These numbers can be
mixed with textual fragments to form hybrid strings. A simple example would
be unbounded file naming where + is any legal character proceeding 9.

1. photo+1.jpg

2. photo+2.jpg

3. photo+3.jpg
...

10. photo++210.jpg

11. photo++211.jpg
...

1234567890. photo+++2101234567890.jpg

7


